Mathematical systems theory

, Volume 6, Issue 3, pp 312–323 | Cite as

Approximation of measure-preserving transformations

  • T. Schwartzbauer
Article
  • 33 Downloads

Keywords

Computational Mathematic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. V. Chacon, Transformations having continuous spectrum,J. Math. Mech. 16 (1966), 399–416Google Scholar
  2. [2]
    R. V. Chacon, Approximation of transformations with continuous spectrum, to appear.Google Scholar
  3. [3]
    R. V. Chacon andT. Schwartzbauer, Approximation and invariance,Contributions to Ergodic Theory and Probability, Proc. First Midwestern Conference on Ergodic Theory, Springer-Verlag, New York, 1970.Google Scholar
  4. [4]
    P. R. Halmos,Lectures on Ergodic Theory, Publ. Math. Soc. Japan, Tokyo, 1956.Google Scholar
  5. [5]
    A. B. Katok, Entropy and approximations of dynamical systems by periodic transformations,Funktsional. Anal. i Prilozhen. 1 (1967), 75–85.Google Scholar
  6. [6]
    A. B. Katok andA. M. Stepin, Approximations in ergodic theory,Uspekhi Math. Nauk (5)22 (1967), 81–106. [Russian Math. Surveys (5)22 (1967), 77–102.]Google Scholar
  7. [7]
    V. A. Rokhlin, On the fundamental ideas of measure theory,Math. Sb. 67 (1949), 107–150. [Amer. Math. Soc. Trans. No. 71 (1952).]Google Scholar
  8. [8]
    V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations,Russian Math. Surveys (5)22 (1967), 1–52.Google Scholar
  9. [9]
    T. Schwartzbauer, A general method for approximating measure-preserving transformations,Proc. Amer. Math. Soc. 24 (1970), 643–648.Google Scholar
  10. [10]
    T. Schwartzbauer, Automorphisms that admit an approximation by periodic transformations,Z. Wahr. Verw. Geb. 15 (1970), 239–248.Google Scholar
  11. [11]
    T. Schwartzbauer, Invariant measurable partitions and approximation, to appear.Google Scholar
  12. [12]
    T. Schwartzbauer, Entropy and approximation of measure-preserving transformations, to appear.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1972

Authors and Affiliations

  • T. Schwartzbauer
    • 1
  1. 1.Ohio State UniversityColumbusUSA

Personalised recommendations