Supratentorial structures controlling oculomotor functions and their involvement in cases of stroke

Article
  • 38 Downloads

Summary

A study is presented mainly of the supratentorial structures that play an important role in saccadic eye movements and smooth pursuit. Eye-movement impairments associated with stroke in the corresponding brain region are then described.

Key words

Eye movements Impairment after stroke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements. A survey of the structural and functional correlates. Brain 103:23–69Google Scholar
  2. Bogousslavsky J, Miklossy J, Regli F, Deruaz J-P, Assal G, Delaloye B (1988) Subcortical neglect: Neuropsychological SPECT, and neuropathological correlations with anterior choroidal artery territory infarction. Ann Neurol 23:448–452Google Scholar
  3. Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635Google Scholar
  4. Büttner-Ennever JA, Büttner U, Cohen B, Baumgartner G (1982) Vertical gaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149Google Scholar
  5. Dürsteler MR, Wurtz RH, Yamasaki DS (1986) Pursuit and OKN deficits following ibotenic acid lesions in the medial superior temporal areas (MST) of monkeys. Soc Neurosci Abstr 12:1182Google Scholar
  6. Dürsteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57:1262–1287Google Scholar
  7. Eckmiller R (1987) Neural control of pursuit eye movements. Physiol Rev 67:797–857Google Scholar
  8. Ferrier D (1986) The localization of function in the brain. Proc R Soc 22:229–232Google Scholar
  9. Geller TJ, Bellur SN (1987) Peduncular hallucinosis: magnetic resonance imaging confirmation of mesencephalic infarction during life. Ann Neurol 21:602–604Google Scholar
  10. Goldberg ME, Bruce CJ (1986) The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Prog Brain Res 64:143–154Google Scholar
  11. Henn V, Lang W, Hepp K, Reisine H (1984) Experimental gaze palsies in monkeys and their relation to human pathology. Brain 107:619–636Google Scholar
  12. Henn V, Hepp K (1986) Pathophysiology of rapid eye movement generation in the primate. Prog Brain Res 64:303–312Google Scholar
  13. Kawano K, Sasaki M, Yamashita M (1984) Response properties of neurons in posterior parietal cortex of monkeys during visual-vestibular stimulation. I. Visual tracking neurons. J Neurophysiol 51:340–351Google Scholar
  14. Keating EG, Golley SG (1988) Disconnection of parietal and occipital access to the saccadic oculomotor system. Exp Brain Res 70:385–398Google Scholar
  15. Kömpf D, Pasik T, Pasik P, Bender MB (1979) Downward gaze in monkeys. Stimulation and lesion studies. Brain 102:527–558Google Scholar
  16. Marx P (1977) Die Gefäßerkrankungen von Hirn und Rückenmark. Fischer, StuttgartGoogle Scholar
  17. Maunsell JHR, Van Essen DC (1983a) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurosci 49:1148–1167Google Scholar
  18. Maunsell JHR, Van Essen DC (1983b) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586Google Scholar
  19. Mohler CW, Goldberg ME, Wurtz RH (1973) Visual receptive fields of frontal eye field neurons. Brain Res 61:385–389Google Scholar
  20. Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of movement visual patterns. In: Chagas C, Gattass R, Gross C, (eds) Pattern recognition mechanisms. Pontifical Academy of Sciences, Vatican City, pp 117–151Google Scholar
  21. Newsome WT, Wurtz RH, Dürsteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840Google Scholar
  22. Orem J, Schlag-Rey M, Schlag J (1973) Unilateral visual neglect and thalamic intralaminar lesions in the cat. Exp Neurol 40:784–797Google Scholar
  23. Pasik T, Pasik P (1975) Experimental models of oculomotor dysfunction in the rhesus monkey. In: Meldrum BS, Marsden CD (eds) Advances in Neurology. Raven Press, New YorkGoogle Scholar
  24. Poggio GL, Talbot WH (1981) Mechanisms of static and dynamic stereopsis in foveal cortes of the rhesus monkey. J Physiol (Lond) 315:469–492Google Scholar
  25. Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32:637–648Google Scholar
  26. Sakata H, Shibutani H, Kawano K (1983) Functional properties of visual tracking neurons in posterior parietal cortex of the monkey. J Neurophysiol 49:1364–1380Google Scholar
  27. Schiffter R, Schliack H (1974) Über ein charakteristisches neurologisches Syndrom bei Ischaemien in der A. carotis interna — cerebri media Strombahn. Fortschr Neurol Psychiat 42:555–562Google Scholar
  28. Schlag J, Schlag-Rey M (1974) Visuomotor functions of central thalamus in monkey. II. Unit activity related to spontaneous eye movement. J Neurophysiol 51:1175–1195Google Scholar
  29. Schlag J, Schlag-Rey M (1986) Role of the central thalamus in gaze control. Prog Brain Res 64:191–202Google Scholar
  30. Schlag-Rey M, Schlag J (1984) Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol 51:1149Google Scholar
  31. Thurston SE, Leigh RJ, Crawford T, Thompson A, Kennard C (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol 23:266–273Google Scholar
  32. Tusa RJ, Ungerleider LG (1988) Fiber pathways of cortical areas mediating smooth pursuit eye movements in monkeys. Ann Neurol 23:174–183Google Scholar
  33. Watson RT, Heilman KM (1979) Thalamic neglect. Neurology 29:690–694Google Scholar
  34. Watson RT, Heilman KM, Miller BD, King FA (1974) Neglect after mesencephalic reticular formation lesions. Neurology 24:294–298Google Scholar
  35. Wurtz RH, Mohler CW (1976) Enhancement of visual response in monkey striate cortex and frontal eye fields. J Neurophysiol 39:766–772Google Scholar
  36. Wurtz RH, Newsome WT (1985) Divergent signals encoded by neurons in extrastriate areas MT and MST during smooth pursuit eye movements. Soc Neurosci Abstr 7:832Google Scholar
  37. Wurtz RH, Hikosaka O (1986) Role of the basal ganglia in the initiation of saccadic eye movements. Prog Brain Res 64:175–190Google Scholar
  38. Zihl J, Von Cramon D (1979) The contribution of the “second” visual system to directed visual attention in man. Brain 102:835–856Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • P. Marx
    • 1
  1. 1.Department of Neurology, Steglitz Medical CenterFree University of BerlinBerlinGermany

Personalised recommendations