Klinische Wochenschrift

, Volume 63, Issue 20, pp 1041–1047 | Cite as

Right ventricular function in patients with chronic obstructive pulmonary disease

  • H. Seibold
  • E. Henze
  • J. Kohler
  • J. Roth
  • A. Schmidt
  • W. Adam
Originalien

Summary

Simultaneous right heart catheterization and radionuclide ventriculography were performed in 27 patients with a wide range of chronic obstructive pulmonary disease. Central hemodynamics and radionuclide studies were done at rest and during exercise. In the resting state the right ventricular ejection fraction (RVEF) was in the normal range (43.3±6%). During exercise a significant (p<0.001) decrease of RVEF to 38.8±6.7% occurred. The pumonary artery mean pressures were 19.9±3.8 at rest. During exercise a significant (p<0.001) increase to 41±9.8 mm Hg occurred. There was a linear relationship between pulmonary pressures and RVEF during exercise in patients with pulmonary artery pressures not exceeding 35 mm Hg. In patients with right ventricular end-diastolic wall thickness ≧6 mm a curvilinear relationship between these parameters could be observed with a flattening of the curve at higher pressures (>35 mm Hg) and lower ejection fractions (<35% RVEF). Radionuclide venticulography cannot substitute for right heart catheterization. Echocardiography is useful for interpretation of right ventricular ejection fractions in advanced chronic obstructive pulmonary disease.

Key words

Chronic bronchitis Right heart disease 

Abbreviations

CI

Cardiac index (l/min/m2)

CO

Cardiac output (l/min)

COPD

Chronic obstructive pulmonary disease

FEV1

Forced expiratory volume in the first second (ml)

HR

Heart rate (B/min)

PAd

Pulmonary artery diastolic pressure (mm Hg)

PAP

Pulmonary artery mean pressure (mm Hg)

PAs

Pulmonary artery peak pressure (mm Hg)

PVR

Pulmonary vascular resistance (dyn·s·cm−5)

PwP

Pulmonary capillary wedge pressure (mm Hg)

RAP

Right arterial pressure (mm Hg)

Raw

Airway resistance (cm H2/l/s)

RNV

Radionuclide ventriculogram

RV

Residual volume (l)

RVEF

Right ventricular ejection fraction (%)

RVEDVI

Right ventricular enddiastolic volume index (ml/m2)

RVEDVI

SVI RVEF (ml/m2)

RVESVI

Right ventricular endsystolic index (m2/m2)

SVI

Stroke volume index (ml/m2)

TLC

Total lung capacity (l)

VC

Vital capacity (l)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brent BN, Berger HJ, Matthay R, Mahler D, Pytlik L, Zaret BL (1982) Physiological correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: A combined radionuclide and hemodynamic study. Am J Cardiol 50:255–262Google Scholar
  2. 2.
    Brent BN, Mahler D, Matthay RA, Berger HJ, Zaret BL (1984) Noninvasive diagnosis of pulmonary artery hypertension in chronic obstructive pulmonary disease. Am J Cardiol 53:1349–1353Google Scholar
  3. 3.
    Cohen M, Fuster V (1984) What do we gain from the analysis of right ventricular function? Jacc 3:1082–1084Google Scholar
  4. 4.
    Dehmer GJ, Lewis SE, Hillis DL, Corbett J, Parkey RW, Willerson JT (1981) Exercise induced alterations in left ventricular volumes and the pressure/volume relationship. A sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation 63:1008–1018Google Scholar
  5. 5.
    Ellis JH, Kirch D, Steele PP (1977) Right ventricular ejection fraction in severe chronic airway obstruction. Chest 71:281Google Scholar
  6. 6.
    Ferlinz L (1982) Right ventricular function in adult cardiovascular disease. Prog Cardiovascular Dis 25:225–267Google Scholar
  7. 7.
    Gassner A, Fridrich L, Vagner M, Pichler M (1985) Pulmonale Hypertonie bei chronischer Atemwegsobstruktion. Dtsch Med Wochenschr 110:247–252Google Scholar
  8. 8.
    Grose R, Strain J, Yipintosoi T (1983) Right ventricular function in valvular heart disease: Relation to pulmonary pressure. Am J Cardiol 2:225–233Google Scholar
  9. 9.
    Guiha NH, Limas CJ, Cohn NJ (1974) Predominant right ventricular dysfunction after right ventricular destruction in the dog. Am J Cardiol 33:254Google Scholar
  10. 10.
    Henze E, Schelbert HR, Wisenberg G, Ratib O, Schön H (1982) Assessment of regurgitant fraction and right and left ventricular function at rest and during exercise. A new technique for determination of right ventricular stroke counts from gated equilibrium blood pool studies. Am H J 104:953–962Google Scholar
  11. 11.
    Jehle J (1985) Beurteilung des Funktionsparameters links-ventricularer Druck. Fortschr Med 102:313–317Google Scholar
  12. 12.
    Krayenbühl HP, Bussmann WD, Turina M, Lüthy E (1968) Is the ejection fraction an index of myocardial contractility. Cardiologica 53:1–10Google Scholar
  13. 13.
    Matsukubo H, Matsuura T, Endo N, Asayama J, Quatanabe T, Furukawa K, Kunishige H, Katsume H, Ijichi H (1977) Echocardiographic measurement of right ventricular wall thickness. Circulation 56:278–284Google Scholar
  14. 14.
    Maddahi J, Berman DS, Matsuoka DT, Waxman AD, Staukus KE, Forrester JS, Swan IHS (1979) A new technique for assessing right ventricular ejection fraction using multiple-gated equilibrium cardiac blood pool scintigraphy. Description, validation and findings in chronic coronary artery disease. Circulation 60:581–589Google Scholar
  15. 15.
    McKusik KA, Bringham JB, Pohost GM, Strauss W (1978) The gated first pass angiogram: A method for measurement of right ventricular ejection fraction. Circulation 57 and 58 II 130Google Scholar
  16. 16.
    Morrison DA, Turgeon J, Ovitt Th (1984) Right ventricular ejection fraction measurement: Contrast angiography versus gated blood pool and gated first pass radionuclide methods. Am J Cardiol 54:651–653Google Scholar
  17. 17.
    Morrison DAS, Sorensen J, Caldwell A, Wright AL, Ritchie J, Kennedy JW (1982) The normal right ventricular response to supine exercise. Chest 82:686Google Scholar
  18. 18.
    Pavel DG, Zimmer M, Patterson VN (1977) In vivo labeling of red blood cells with 99m Tc: A new approach to blood pool visualization. J Nucl Med 18:305–308Google Scholar
  19. 19.
    Sarnoff SJ, Berglund E (1954) Ventricular function. I. Starlings law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation 9:796Google Scholar
  20. 20.
    Seibold H, Roth J, Henze E, Hartel M, Adam WE (1984) Simultaneous invasive and noninvasive evaluation of the hemodynamics in patients with chronic obstructive lung disease (abstr.). Respiration 46:166–167Google Scholar
  21. 21.
    Seibold H, Richter P, Lippert R, Stauch M (1985) Pulmonary gas exchange and central hemodynamics at rest and during exercise in patients with chronic obstructive pulmonary disease. Respiration (submitted)Google Scholar
  22. 22.
    Sibbald WJ, Driedger AA, Myers ML, Short AI, Wells GA (1983) Biventricular function in the adult respiratory distress syndrom. Chest 84:126–134Google Scholar
  23. 23.
    Steingart RM, Wexler J, Slagle S, Scheuer J (1984) Radionuclide ventriculographic responses to graded supine and upright exercise: Critical role of the Frank-Starling mechanism at submaximal exercise. Am J Cardiol 53:1671–1677Google Scholar
  24. 24.
    Weiner HB, Alpert JS, Dalen JE, Ockene IS (1983) Response of the right ventricle to exercise in patients, with chronic heart disease. Am Heart J 105:387–392Google Scholar
  25. 25.
    Winzelberg GG, Boucher CA, Prohost GH, McKusick KA, Bingham JB, Okada RD (1981) Right ventricular function in aortic and mitral valve disease. Chest 79:520–528Google Scholar
  26. 26.
    Zeilhofer R (1964) Einfluß der Atemmechanik auf den Kreislauf. Arch Kreislaufforsch 44:156–201Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Seibold
    • 1
  • E. Henze
    • 2
  • J. Kohler
    • 1
  • J. Roth
    • 2
  • A. Schmidt
    • 1
  • W. Adam
    • 2
  1. 1.Sektion Kardiologie, Pulmonologie, AngiologieUniversität UlmGermany
  2. 2.Abteilung NuklearmedizinUniversität UlmGermany

Personalised recommendations