Skip to main content
Log in

The possible role of solid surface area in condensation reactions during chemical evolution: Reevaluation

  • Synthesis
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Published data on adsorption and condensation of amino acids, purine and pyrimidine bases, sugars, nucleosides, and nucleotides are analyzed in connection with Bernal's hypothesis that clays and other minerals may have provided the most likely surface for adsorption and condensation of these molecules in prebiotic times. Using surface concentration and reaction rate as the main criteria for the feasibility of condensation reactions, four types of prebiotic environments were analyzed: (1) an ocean-sediment system, (2) a dehydrated lagoon bed produced by evaporation, (3) the surface of a frozen sediment, and (4) a fluctuating system where hydration (rainstorms, tidal variations, flooding) and dehydration (evaporation) take place in a cyclic manner. With the possible exception of nucleotides, low adsorption of organomonomers on sediment surfaces of a prebiotic ocean (pH 8) is expected, and significant condensation is considered unlikely. In dehydrated and frozen systems, high surface concentrations are probable and condensation is more likely. In fluctuating environments, condensation rates will be enhanced and the size distribution of the oligomers formed during dehydration may be influenced by a “redistribution mechanism” in which adsorbed oligomers and monomers are desorbed and redistributed on the solid surface during the next hydration-dehydration cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M. (1967). J.Colloid Interface Sci. 25, 174

    Google Scholar 

  • Anderson, D.M., Banin, A. (1975). Origins of Life 6, 23

    Google Scholar 

  • Bernal, J.D. (1951). The physical basis of life. London: Routledge and Kegan Paul

    Google Scholar 

  • Blumstein, A. (1965). J.Polymer Sci. A3, 2653

    Google Scholar 

  • Bonner, W.A., Flores, J. (1973). Currents Mod.Biol. 5, 103

    Google Scholar 

  • Bonner, W.A., Kavasmaneck, P.R., Martin, F.S. (1974). Science 186, 143

    Google Scholar 

  • Brack, A., Orgel, L.E. (1975). Nature 256, 383

    Google Scholar 

  • Burton, F.G., Neuman, M.W., Neuman, W.F. (1969). Currents Mod.Biol. 3, 20

    Google Scholar 

  • Burton, F.G., Lohrmann, R., Orgel, L.E. (1974). J.Mol.Evol. 3, 141

    Google Scholar 

  • Burton, F.G., Neuman, W.F. (1974). Currents in Modern Biol. 4, 47

    Google Scholar 

  • Cairns-Smith, A.G. (1971). The life puzzle. Toronto and Buffalo: University of Toronto Press

    Google Scholar 

  • Calvin, M. (1969). Chemical evolution. New York and Oxford: Oxford University Press

    Google Scholar 

  • Cloos, P., Calicis, B., Fripiat, J.J., Makay, K. (1966). Proc.Int.Clay Conf.Jerusalem 1, 223

    Google Scholar 

  • Davis, G.A., Worrall, W.E. (1971). Trans.Brit.Ceram.Soc. 70, 71

    Google Scholar 

  • Degens, E.T., Matheja, J. (1970). In: Prebiotic and biochemical evolution, A.P. Kimball, J. Oro, eds., p. 39. Amsterdam: North Holland

    Google Scholar 

  • Dose, K. (1975). BioSystems 6, 224

    Google Scholar 

  • Flores, J.J., Lecki, J.O. (1973). Nature 244, 435

    Google Scholar 

  • Flores, J.J., Bonner, W.A. (1974). J.Mol.Evol. 3, 49

    Google Scholar 

  • Fox, S.W. (1969). Encyclopedia Polymer Sci.Technol. 9, 284

    Google Scholar 

  • Fripiat, J.J. (1972). Int.Clay Conf.Madrid 1972, 2, 537

    Google Scholar 

  • Fripiat, J.J., Cruz-Cumplido, J. (1974). Ann.Rev.Earth Planet Sci. 2, 239

    Google Scholar 

  • Fuller, W.D., Sanchez, R.A., Orgel, L.E. (1972). J.Mol.Biol. 67, 25

    Google Scholar 

  • Gabel, N.W. (1976). In: Progress in molecular and subcellular biology, Vol.5:1. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Good, W. (1973). J.Theoret.Biol. 39, 249

    Google Scholar 

  • Greenland, D.J. (1956). J.Soil Sci. 7, 329

    Google Scholar 

  • Greenland, D.J., Laby, R.H., Quirk, J.P. (1965a). Trans.Faraday Soc. 61, 2013

    Google Scholar 

  • Greenland, D.J., Laby, R.H., Quirk, J.P. (1965b). Trans.Faraday Soc. 61, 2024

    Google Scholar 

  • Grim, R.E. (1968). Clay mineralogy. New York: MyGraw-Hill

    Google Scholar 

  • Hanafusa, H., Akabori, S. (1959). Bull.Chem.Soc.Japan 32, 626

    Google Scholar 

  • Ibanez, J.D., Kimball, A.P., Oro, J. (1970). Science 171, 444

    Google Scholar 

  • Jackson, T.A. (1971). Experimentia (Basel) 27, 242

    Google Scholar 

  • Jepson, W.B., Williams, J.F. (1972). Clay Minerals 9, 275

    Google Scholar 

  • Katchalsky, A. (1973). Naturwissenschaften 60, 215

    Google Scholar 

  • Kenyon, D.H., Steinman, G. (1969). Biochemical predestination, p. 214. New York: McGraw-Hill

    Google Scholar 

  • Lahav, N. (1975). J.Mol.Evol. 5, 243

    Google Scholar 

  • Lahav, N., Anderson, D.M. (1973). Israel J.Chem. 11, 549

    Google Scholar 

  • Lai, T.M., Mortland, M.M. (1968). Soil Sci.Soc.Am.Proc. 32, 56

    Google Scholar 

  • Lailach, G.E., Thompson, T.D., Brindley, G.W. (1968). Clays and Clay Minerals 16, 285

    Google Scholar 

  • Lailach, G.E., Brindley, G.W. (1969). Clays and Clay Minerals 17, 95

    Google Scholar 

  • McCullough, J.J., Lemmon, R.M. (1974). J.Mol.Evol. 3, 57

    Google Scholar 

  • Miller, S.L. (1953). Science 117, 528

    Google Scholar 

  • Miller, S.L. (1974). In: Cosmochemical evolution and the origins of life, Vol. I:139. Dordrecht-Holland: Reidel

    Google Scholar 

  • Miller, S.L., Orgel, L.E. (1974). The origins of life on earth. Englewood Cliffs, New Jersey: Prentice-Hall

    Google Scholar 

  • Misfud, A., Fornes, V., Rausell-Colom, J.A. (1970). Reunion Hispano-Belga De Minerales De Argilla, 121

  • Mitra, S.P., Misra, S.G., Panda, V. (1957). Proc.Natl.Acad.Sci.India 26A, 72

    Google Scholar 

  • Mortland, M.M. (1970). Advan.Agron. 22, 75

    Google Scholar 

  • Neuman, M.W., Neuman, W.F., Burton, F.G. (1969). Currents Mod.Biol. 3, 69

    Google Scholar 

  • Nissenbaum, A., Kenyon, D.H., Oro, J. (1967). J.Mol.Evol. 6, 253

    Google Scholar 

  • Odom, D.G., Brady, J.T. (1975). J.Mol.Evol. 6, 199

    Google Scholar 

  • Orgel, L.E. (1972). Israel J.Chem. 10, 287

    Google Scholar 

  • Orgel, L.E., Lohrmann, R. (1974). Accounts Chem.Res. 7, 368

    Google Scholar 

  • Oro, J., Stephen-Sherwood, E. (1973). In: Cosmochemical evolution and the origins of life, Vol. I:159. Dordrecht-Holland/Boston, USA: Reidel

    Google Scholar 

  • Paecht,Horowitz, M., Berges, J., Katchalsky, A. (1970). Nature 228, 636

    Google Scholar 

  • Park, W.K., Hochstim, A.R., Ponnamperuma, C. (1975). Origins of Life 6, 99

    Google Scholar 

  • Sagan, C., Khare, B.N. (1971). Science 173, 417

    Google Scholar 

  • Sawai, H., Lohrmann, R., Orgel, L.E. (1975). J.Mol.Evol. 6, 165

    Google Scholar 

  • Sawai, H., Orgel, L.E. (1975). J.Mol.Evol. 6, 185

    Google Scholar 

  • Schwartz, A.W., Van Der Veen, M., Bisseling, T., Chittenden, G.J.F. (1973). BioSystems 5, 119

    Google Scholar 

  • Sillen, L.G. (1967). Science 156, 1139

    Google Scholar 

  • Steinman, G. (1966). Science 154, 1344

    Google Scholar 

  • Steinman, G.D., Kenyon, D.H., Calvin, M. (1966). Biochim.Biophys.Acta 124,339

    Google Scholar 

  • Stephen-Sherwood, E., Odom, D.G., Oro, J. (1974). J.Mol.Evol. 3, 323

    Google Scholar 

  • Theng, B.K.G. (1973). The chemistry of clay-organic reactions. New York and Tokyo: Wiley

    Google Scholar 

  • Thompson, T.D., Brindley, G.W. (1969). Am.Mineral. 54, 858

    Google Scholar 

  • Warden, J.T., McCullough, J.J., Lemmon, R., Calvin, M. (1974). J.Mol.Evol. 4, 189

    Google Scholar 

  • Wedepohl, K.H. (1969). In: Handbook of geochemistry, K.H. Wedepohl, ed., Vol. 1, p. 227. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Faculty of Agriculture, Rehovot, The Hebrew University of Jerusalem, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahav, N., Chang, S. The possible role of solid surface area in condensation reactions during chemical evolution: Reevaluation. J Mol Evol 8, 357–380 (1976). https://doi.org/10.1007/BF01739261

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01739261

Key words

Navigation