Skip to main content
Log in

A deep breath method for noninvasive estimation of cardiopulmonary parameters

  • Published:
International journal of clinical monitoring and computing

Abstract

A specific ventilation pattern incorporating a single deep breath is used to demonstrate the possibility of estimating six cardiopulmonary parameters by measuring respiratory flow and expired oxygen and carbon dioxide concentrations at the mouth. Equations are derived from both alternating and continuous ventilation models of gas exchange which allow the six parameter estimates to be computed. The results indicate that pulmonary capillary blood flow, functional residual capacity, equivalent lung volume, mixed venous PO2 and PCO2, and pulmonary tissue plus capillary blood volume can be estimated in subjects with normal gas exchange.

The use of a mechanical ventilator to provide a uniform ventilation pattern before and after the ventilator induced deep breath is the key to the methods simplicity. This allowed parameter estimates to be obtained which could then be analyzed for accuracy and precision. The feasibility of estimating these parameters, demonstrated by the present study, suggests that a recursive least squares estimation procedure could be used to recover the time variation of each parameter during exercise stress testing of subjects with normal or nearly normal gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christiansen J, Douglas CG, Haldane JS: The absorption and dissociation of carbon dioxide by human blood. J Physiol 48: 244–271, 1914.

    PubMed  CAS  Google Scholar 

  2. Dubois AB, Britt AG, Fenn WO: Alveolar CO2 during the respiratory cycle. J Appl Physiol 4: 535–548, 1952.

    PubMed  CAS  Google Scholar 

  3. Knowles JH, Newman W, Fenn WO: Determination of oxygenated mixed venous blood CO2 tension by a breath holding method. J Appl Physiol 15: 225–228, 1960.

    PubMed  CAS  Google Scholar 

  4. Fenn WO, Dejours P: Composition of alveolar air during breath holding with and without prior inhalation of oxygen and carbon dioxide. J Appl Physiol 313–319, 1954.

  5. Kim TS, Rahn H, Farhi LE: Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol 21: 1338–1344, 1966.

    PubMed  CAS  Google Scholar 

  6. Chinard FP, Enns T, Nolan MF: Contributions of bicarbonate ion and of dissolved CO2 to expired CO2 in dogs. Am J Physiol 198: 78, 1960.

    PubMed  CAS  Google Scholar 

  7. Chinard FP: The permeability characteristics of the pulmonary blood-gas barrier. In: Caro CG. (ed.) Advances in Respiratory Physiology, Williams and Wildins Co., Baltimore, 1966.

    Google Scholar 

  8. Feisal KA, Sackner MA, DuBois AB: Comparison between the time available and the time required for CO2 equilibration in the lung. J Clin Invest 42: 24, 1963.

    Article  PubMed  CAS  Google Scholar 

  9. Hyde RW, Puy RJM, Raub WF, Forster RE: Rate of disappearance of labeled carbon dioxide from the lungs of humans during breath holding; a method for studying the dynamics of pulmonary CO2 exchange. J Clin Invest 47: 1535–1552, 1968.

    PubMed  CAS  Google Scholar 

  10. Sackner MA, Feisal KA, DuBois AB: Determination of tissue volume and carbon dioxide dissociation slope of the lungs in man. J Appl Physiol 19: 374–380, 1964.

    PubMed  CAS  Google Scholar 

  11. Cander L, Forster RE: Determination of pulmonary parenchymal tissue volume and pulmonary capillary blood flow in man. J Appl Physiol 14: 541–551, 1959.

    CAS  Google Scholar 

  12. Burwell SC, Robinson GC: A method for the determination of the amount of oxygen and carbon dioxide in the mixed venous blood of man. J Clin Invest 1: 47–63, 1924.

    Article  PubMed  CAS  Google Scholar 

  13. Ceretelli P, Cruz JC, Farhi LE, Rahn H: Determination of mixed venous O2 and CO2 tensions and cardiac output by a rebreathing method. Resp Physiol 1: 258–264, 1966.

    Article  Google Scholar 

  14. Ceretelli P, Di Pranpero PE, Rennie DW: Measurement of mixed venous oxygen tension by a modified rebreathing procedure. J Appl Physiol 28: 707–711, 1970.

    Google Scholar 

  15. Ellis FR, Spence AA: A critical evaluation of a nitrogen rebreathing method for the estimation of PVO2. J Physiol 211: 19P, 1970.

  16. Reynolds WJ, Milhorn HT, Holloman GH: Transient ventilatory response to graded hypercapnia in man. J Appl Physiol 33: 47, 1972.

    PubMed  CAS  Google Scholar 

  17. McMichael J: A rapid method of determining lung capacity. Clin Sci 4: 167–173, 1939.

    Google Scholar 

  18. Cournand A, Baldwin E, Darling RC, Richards DW: Studies on the intrapulmonary mixture of gases. IV. The significance of the Pulmonary emptying rate and a simplified open circuit measurement of residual air. J Clin Invest 20: 681–689, 1941.

    Article  PubMed  CAS  Google Scholar 

  19. DuBois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH Jr.: A rapid plethysmographic method for measuring thoracic gas volume: A comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest 35: 322–326, 1956.

    Article  PubMed  CAS  Google Scholar 

  20. Briscoe WA: Lung Volumes. Handbook of Physiology, Sec. 3. Respiration, Vol. 2. Washington DC, Amer Physiol Soc 1965, pp 1345–1379.

    Google Scholar 

  21. Fowler WS, Cornish ER, Kety SS: Lung function studies VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. J Clin Invest 31: 40–50, 1952.

    Article  PubMed  CAS  Google Scholar 

  22. Hickam JB, Frayser R: A comparative study of intrapulmonary gas mixing and functional residual capacity in pulmonary emphysema, using helium and nitrogen as the test gases. J Clin Invest 37: 567–573, 1958.

    Article  PubMed  CAS  Google Scholar 

  23. Box GE, Jenkins GM: Time Series Analysis-forecasting and Control. Holden-Day Inc, San Francisco, 1970, p 17.

    Google Scholar 

  24. Chilton AB, Stacy RW: A mathematical analysis of carbon dioxide respiration in man. Bull Math Biophys 14: 1–18, 1952.

    Article  CAS  Google Scholar 

  25. DuBois AB, Britt AG, Fenn WO: Alveolar CO2 during the respiratory cycle. J Appl Physiol 4: 535, 1952.

    PubMed  CAS  Google Scholar 

  26. Chilton AB, Barth DS, Stacy RW: A mathematical analysis of oxygen respiration in man. Bull Math Biophys 16: 1, 1954.

    Article  Google Scholar 

  27. Yamamoto W, Hori T: Phasic air movement model of respiratory regulation of carbon dioxide balance. Comp Biomed Res 3: 699–717, 1971.

    Article  Google Scholar 

  28. Kelman JA, Homer LD: The analysis of pulmonary and cardiovascular parameters with a mathematical model of external respiration. Math Biosci 13: 369–388, 1972.

    Article  Google Scholar 

  29. Suwa J, Bendixen HH: Pulmonary gas exchange in a tidally ventilated single alveolus model. J Appl Physiol 32: 834–841, 1972.

    PubMed  CAS  Google Scholar 

  30. Dresdner RD, Mitchell RR, Osborn JJ: A model evaluation of carbon dioxide dilution in the pulmonary system. San Diego Biomedical Symposium Proceedings 13: 241–248, 1974.

    Google Scholar 

  31. Kelman GR: Digital computer procedure for the conversion of PCO2 into blood CO2 content. Respir Physiol 3: 111–115, 1967.

    Article  PubMed  CAS  Google Scholar 

  32. Comroe JH Jr. et al.: The Lung. Year Book Medical Publishers, Inc, Chicago, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, R.R. A deep breath method for noninvasive estimation of cardiopulmonary parameters. J Clin Monit Comput 5, 53–64 (1988). https://doi.org/10.1007/BF01739233

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01739233

Key words

Navigation