Skip to main content
Log in

C1-inhibitor substitution therapy in septic shock and in the vascular leak syndrome induced by high doses of interleukin-2

  • Originals
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

C1-inhibitor (C1-INH) is the major plasma inhibitor of the complement and contact systems. Activation of either system has been shown to occur in patients with septic shock and is associated with a poor outcome. Functional levels of C1-INH tend to be normal in septic patients although paradoxically this inhibitor is an acute phase protein. Moreover, levels of proteolytically inactivated C1-INH are increased in sepsis pointing to an increased turn-over. These observations suggest a relative deficiency of biologically active C1-INH in sepsis. Complement and contact activation have also been shown to occur in the vascular leak syndrome (VLS) induced by immunotherapy with the cytokine interleukin-2 (IL-2), which syndrome may be regarded as a human model for septic shock. The similarity between VLS and sepsis encompasses more than complement and contact activation since a number of other inflammatory mediators considered to play a role in the pathogenesis of septic shock, are also involved in the development of VLS. The role and the mechanisms of complement and contact activation in sepsis and in the VLS are reviewed in this paper. Initial results of intervention therapy with high doses of C1-INH in these syndromes are also reported. It is concluded that high doses of C1-INH can be safely administered to patients with septic shock or with VLS and may attenuate complement and contact activation in these conditions. Double-blind controlled studies are needed to definitely prove these effects and to establish whether this treatment is able to reduce mortality and morbidity of these syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris RL, Musher DM, Bloom K, Gathe J, Rice L, Sugarman B, Williams TW, Young ED (1987) Manifestations of sepsis. Arch Intern Med 147:1895–1906

    Google Scholar 

  2. Parker MM, Parillo JE (1983) Septic shock. Hemodynamics and pathogenesis. JAMA 250:3324–3327

    Google Scholar 

  3. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469

    Google Scholar 

  4. Parrillo JE (1991) Management of septic shock: present and future. Ann Intern Med 115:491–493

    Google Scholar 

  5. McCabe WR, Treadwell TL, De Maria A Jr (1983) Pathophysiology of bacteremia. Am J Med 75:7–18

    Google Scholar 

  6. Harris RL, Mushner DM, Bloom K, Gathe J, Rice L, Sugarman B, Williams TW, Young EJ (1987) Manifestations of sepsis. Arch Intern Med 147:1895–1906

    Google Scholar 

  7. Kreger BE, Craven DE, Carling PC (1980) Gram-negative bacteriemia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68:332–343

    Google Scholar 

  8. Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systmes. Am J Pathol 93:527–617

    Google Scholar 

  9. Beutler B, Cerami A (1987) Cachetin: more then a tumor necrosis factor. N Engl J Med 316:379–385

    Google Scholar 

  10. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871

    Google Scholar 

  11. Parillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    Google Scholar 

  12. Cohen J, Glauser MP (1991) Septic shock: treatment. Lancet 338:736–739

    Google Scholar 

  13. DeForge LE, Nguyen DT, Kunkel SL, Remick DG (1990) Regulation of the pathophysiology of tumor necrosis factor. J Lab Clin Med 116:429–438

    Google Scholar 

  14. Fong Y, Lowry SF (1990) Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol 55:157–170

    Google Scholar 

  15. Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol 118:362–368

    Google Scholar 

  16. Grossman N, Leive L (1984) Complement activation via the alternative pathway by purifiedSalmonella lipopolysaccharide is affected by its structure but not its O-antigen length. J Immunol 132:376–385

    Google Scholar 

  17. Kalter ES, van Dijk WC, Timmermans A, Verhoef J, Bouma BN (1983) Activation of purified human plasma prekallikrein triggered by cell wall fractions ofEscherichia coli andStaphylococcus aureus. J Infect Dis 148:692–697

    Google Scholar 

  18. Morrison DC, Cochrane CG (1974) Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 140:797–811

    Google Scholar 

  19. Sim RB, Reboul A, Arlaud GJ, Villiers CL, Colomb MG (1979) Interaction of125I-labelled complement subcomponents C1r and C1s with protease inhibitors in plasma. FEBS Lett 97:111–115

    Google Scholar 

  20. Pixley RA, Schapira M, Colman RW (1985) The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem 260:1723–1729

    Google Scholar 

  21. van der Graaf F, Koedam JA, Bouma BN (1983) Inactivation of kallikrein in human plasma. J Clin Invest 71:149–158

    Google Scholar 

  22. Carrell RW, Boswell DR (1990) Serpins: the superfamily of plasma serine proteinase inhibitors. In: Barrett AJ, Salvesen G (eds) Proteinase inhibitors, pp 403–420

  23. Carrell RW, Christey PB, Boswell DR (1987) Serpins: antithrombin and other inhibitors of coagulation and fibrinolysis. Evidence from amino acid sequences. In: Verstraete M, Vermylen J, Lijnen R, Arnout J (eds) Thrombosis and haemostasis. Leuven University Press, Leuven, pp 1–15

    Google Scholar 

  24. Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709

    Google Scholar 

  25. Gaynor ER, Vitek L, Sticklin L, Creekmore SP, Ferraro ME, Thomas JX, Fisher SG, Fisher RI (1988) The hemodynamic effects of treatment with Interleukin-2 and lymphokine activated killer cells. Ann Intern Med 109:953–958

    Google Scholar 

  26. Ognibene FP, Rosenberg SA, Lotze M, Skibber J, Parker MM, Shelhamer JH, Parillo JE (1988) Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunction similar to those seen in septic shock. Chest 94:750–754

    Google Scholar 

  27. Muller-Eberhard HJ, Schreiber RD (1980) Molecular biology and chemistry of the alternative pathway of complement. Adv Immunol 29:1–53

    Google Scholar 

  28. Craddock PR, Hammerschmidt DE, Moldow CF, Yamada O, Jacob HS (1977) Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination. Semin Hematol 16:140–147

    Google Scholar 

  29. Argenbright LW, Barton RW (1992) Interactions of leukocyte integrins with intercellular adhesion molecule 1 in the production of inflammatory vascular injury in vivo. The Shwartzman reaction revisited. J Clin Invest 89:259–272

    Google Scholar 

  30. Hattori R, Hamilton HK, McEver RP, Sims PJ (1989) Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 264:9053–9060

    Google Scholar 

  31. Bjork J, Hugli TE, Smedegard G (1985) Microvascular effects of anaphylatoxins C3a and C5a. J Immunol 134:1115–1119

    Google Scholar 

  32. Goldstein IM (1988) Complement: biologically active products. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: Basic principles and clinical correlates. Raven Press, New York, pp 55–74

    Google Scholar 

  33. Müller-Eberhard HJ (1988) Complement: chemistry and pathways. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press, New York, pp 21–53

    Google Scholar 

  34. Osterud B, Olsen JO, Benjaminsen AW (1984) The role of complement in the induction of thromboplasmin synthesis. Haemostasis 14:386–392

    Google Scholar 

  35. Hamilton KK, Hattori R, Esmon CT, Sims PJ (1990) Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 265:3809–3814

    Google Scholar 

  36. Carson SD, Johnson DR (1990) Consecutive enzyme cascades: complement activation at the cell surface triggers increased tissue factor activity. Blood 762:361–367

    Google Scholar 

  37. Anderson SL, Looney RJ (1986) Human leukocyte IgG Fc receptors. Immunol Today 7:264–266

    Google Scholar 

  38. Wiedmer T, Esmon CT, Sims PJ (1986) Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 68:875–880

    Google Scholar 

  39. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    Google Scholar 

  40. Wiedmer T, Esmon CT, Sims PF (1986) On the mechanism by which complement proteins C5b-9 increase platelet prothrombinase activity. J Biol Chem 261:14587–14592

    Google Scholar 

  41. Vogt W (1986) Anaphylatoxins: possible roles in disease. Complement 3:177–188

    Google Scholar 

  42. Hugli TE (1983) Structure and function of the anaphylatoxins. Springer Semin Immunopathol 7:193–219

    Google Scholar 

  43. Lundberg C, Marcheau F, Hugli TE (1987) C5a-induced hemodynamic and hematologic changes in the rabbit. Am J Pathol 128:471–483

    Google Scholar 

  44. Bult H, Herman AG, Laekeman GM, Rampart M (1985) Formation of prostanoids during intravascular complement activation in the rabbit. Br J Pharmacol 84:329–336

    Google Scholar 

  45. Hammerschmidt DE, Hudson LD, Weaver LJ, Craddock PR, Jacob HS (1980) Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet I:947–949

    Google Scholar 

  46. Stevens JH, O'Hanley P, Shapiro JM, Mihm FG, Satoh PS, Collins JA, Raffin TA (1986) Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J Clin Invest 77:1812–1816

    Google Scholar 

  47. Smedegard G, Cui L, Hugli TE (1989) Endotoxin-induced shock in the rat. A role for C5a. Am J Pathol 135:489–497

    Google Scholar 

  48. Van Deventer SJH, Büller HR, Ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathway. Blood 76:2520–2526

    Google Scholar 

  49. Goodman MG, Chenoweth DE, Weigle WO (1982) Induction of interleukin 1 secretion and enhancement of humeral immunity by binding of human C5a to macrophage surface C5a receptors. J Exp Med 1156:912–917

    Google Scholar 

  50. Okusawa S, Yancey KB, Van der Meer JWM, Endres S, Lonnemann G, Hefter K, Frank MM, Burke JF, Dinarello CA, Gelfand JA (1988) C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1β and interleukin 1α. J Exp Med 168:443–448

    Google Scholar 

  51. Okusawa S, Dinarello CA, Yancey KB, Endres S, Lawley TJ, Frank MM, Burke JF, Gelfand JA (1987) C5a induction of human interleukin 1. Synergistic effect with endotoxin or interferon-gamma. J Immunol 139:2635–2640

    Google Scholar 

  52. Scholz W, McClurg MR, Cardenas GJ, Smith M, Noonan DJ, Hugli TE, Morgan EL (1990) C5a-mediated release of interleukin 6 by human monocytes. Clin Immunol Immunopathol 57:297–307

    Google Scholar 

  53. Haeffner-Cavaillon N, Cavaillon J-M, Laude M, Kazatchkine MD (1987) C5a (C3 adesArg) induces production and releae of interleukin 1 by cultured human monocytes. J Immunol 139:794–799

    Google Scholar 

  54. Cavaillon J-M, Fitting C, Haeffner-Cavaillon N (1990) Recombinat C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and marcophages. Eur J Immunol 20:253–257

    Google Scholar 

  55. Schindler R, Gelfland JA, Dinarello CA (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by LPS or IL-1 itself. Blood 76:1631–1638

    Google Scholar 

  56. Montz H, Koch K-C, Zierz R, Götze O (1991) The role of C5a in interleukin-6 production induced by lipopolysaccharide or interleukin-1. Immunology 74:373–3749

    Google Scholar 

  57. McCabe WR (1973) Serum complement levels in bacteremia due to gram-negative organisms. N Engl J Med 288:21–23

    Google Scholar 

  58. Fearon DT, Ruddy S, Schur PH, McCabe WR (1975) Activation of the properdin pathway of complement in patients with gramnegative bacteremia. N Engl J Med 292:937–940

    Google Scholar 

  59. Kalter ES, Daha MR, Ten Cate JW, Verhoef J, Bouma BN (1985) Activation and inhibition of Hageman factor-dependent pathways and the complement system in uncomplicated bacteremia or bacterial shock. J Infect Dis 151:1019–1027

    Google Scholar 

  60. Hack CE, Nuijens JH, Felt-Bersma RJF, Schreuder WO, Eerenberg-Belmer AJM, Paardekooper J, Bronsveld W, Thijs LG (1989) Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med 86:20–26

    Google Scholar 

  61. Heideman M, Norder-Hansson B, Bengtson A, Mollnes TE (1988) Terminal complement complexes and anaphylatoxins in septic and ischemic patients. Arch Surg 123:188–192

    Google Scholar 

  62. Heideman M, Hugli TE (1984) Anaphylatoxin generation in multisystem organ failure. J Trauma 24:1038–1043

    Google Scholar 

  63. Bengtson A, Heideman M (1988) Ahaphylatoxin formation in sepsis. Arch Surg 123:645–649

    Google Scholar 

  64. Slotman GJ, Burchard KW, Williams JJ, D'Arezzo A, Yellin SA (1986) Interaction of prostaglandins, activated complement, and granulocytes in clinical sepsis and hypotension published erratum appears in Surgery 1988 Jul; 104(1):114. Surgery 99:744–751

    Google Scholar 

  65. Langlois PF, Gawryl MS (1988) Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am Rev Respir Dis 138:368–375

    Google Scholar 

  66. Kaplan AP (1985) The intrinsic coagulation, fibrinolytic and kinin-forming pathways of man. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 95–114

    Google Scholar 

  67. Colman RW (1984) Surface-mediated defense reactions. The plasma contact activation system. J Clin Invest 73:1249–1253

    Google Scholar 

  68. Kozin F, Cochrane CG (1988) The contact activation system of plasma: Biochemistry and pathophysiology. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press, New York, pp 101–120

    Google Scholar 

  69. Kaplan AP, Silverberg M (1987) The coagulation-kinin pathway of human plasma. Blood 70:1–15

    Google Scholar 

  70. Colman RW, Schmaier AH (1986) The contact activation system: biochemistry and interactions of these surface-mediated defense reactions. Crit Rev Oncol Hematol 5:57–85

    Google Scholar 

  71. Cochrane CG, Griffin JH (1982) The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol 33:241–304

    Google Scholar 

  72. Saito H (1987) Contact factors in health and disease. Thromb Haemost 13:36–49

    Google Scholar 

  73. Yamamoto T, Cochrane CG (1981) Guinea pig Hageman factor as a vascular permeability enhancement factor. Am J Pathol 105:164–175

    Google Scholar 

  74. Wachtfogel YT, Kucich U, James HV, Scott CF, Shapira M, Zimmerman M, Cohen AB, Colman RW (1983) Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 72:1672–1677

    Google Scholar 

  75. Colman RW, Wachtfogel YT, Kucich U, Weinbaum G, Hahn S, Pixley RA, Scott CF, De Agostini A, Burger D, Schapira M (1985) Effect of cleavage of the heavy chain of human plasma kallikrein and its functional properties. Blood 65:311–318

    Google Scholar 

  76. Schapira M, Despland E, Scott CF, Boxer LA, Colman RW (1982) Purlfied human plasma kallikrein aggregates human blood neutrophils. J Clin Invest 69:1199–1202

    Google Scholar 

  77. Kaplan AP, Kay AB, Austen KF (1972) A prealbumin activator of prekallikrein. II. Appearance of chemotactic activity for neutrophils by the conversion of human prekallikrein to kallikrein. J Exp Med 135:81–97

    Google Scholar 

  78. Schapira M, Henry J, Wachtfogel YT et al (1983) A role for plasma kallikrein in rheumatoid arthritis. Clin Res 31:454A

    Google Scholar 

  79. Vane JR, AnggÅrd EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Google Scholar 

  80. Ghebrehiwet B, Randazzo BP, Dunn JT (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71:1450–1455

    Google Scholar 

  81. Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activations of the classical pathway of complement by Hageman factor fragment. J Exp Med 153:665–676

    Google Scholar 

  82. Cool DE, Edgell CS, Louie GV, Zoller MJ, Brayer GD, Macgillivray RTA (1985) Characterization of human blood coagulation factor XII cDNA. Prediction of the primary stucture of factor XII and the tertiary structure of beta-factor XIIa. J Biol Chem 260:13666–13676

    Google Scholar 

  83. McMullen BA, Fujikawa K (1985) Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor). J Biol Chem 260:5328–5341

    Google Scholar 

  84. Bachmann F (1987) Fibrinolysis. In: Verstraete M, Vermylen J, Lijnen R, Arnout J (eds) Thrombosis and haemostasis. XIth Congress, Leuven-University Press, Leuven, pp 227–265

    Google Scholar 

  85. Hauert J, Nicoloso G, Schleuning WD, Bachman F, Schapira M (1989) Plasminogen activators in dextran sulfate-activated euglobulin fractions: a molecular analysis of factor XII- and prekallikrein-dependent fibrinolysis. Blood 73:994–999

    Google Scholar 

  86. Binnema DJ, Dooijewaard G, Turion PNC (1991) An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein. Thromb Haemost 65:144–148

    Google Scholar 

  87. Kluft C, Dooijewaard G, Emeis JJ (1987) Role of the contact system in fibrinolysis. Thromb Haemost 13:50–68

    Google Scholar 

  88. Jörg M, Binder BR (1985) Kinetic analysis of plasminogen activation by purified plasma kallikrein. Thromb Res 39:323–331

    Google Scholar 

  89. Colman RW (1969) Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun 35:273–278

    Google Scholar 

  90. Goldsmith GH, Saito H, Ratnoff OD (1978) The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments. J Clin Invest 62:54–60

    Google Scholar 

  91. Ratnoff OD, Busse RJ Jr, Sheon RP (1968) The demise of John Hageman. N Engl J Med 279:760–761

    Google Scholar 

  92. Goodnough LT, Saito H, Ratnoff OD (1983) Thrombosis or myocardial infarction in congenital clotting factor abnormalities and chronic thrombocytopenias: a report of 21 patients and a review of 50 previously reported cases. Medicine (Baltimore) 62:248–255

    Google Scholar 

  93. Lammle B, Wuillemin WA, Huber I, Krauskopf M, Zürcher C, Pflugshaupt R, Furlan M (1991) Thromboembolism and bleeding tendency in congenital factor XII deficiency. A study on 74 subjects from 14 Swiss families. Thromb Haemost 65:117–121

    Google Scholar 

  94. Levi M, De Boer JP, Roem D, Ten Cate JW, Hack CE (1992) Plasminogen activation in vivo upon intravenous infusion of DDAVP: quantitative assessment of plasmin-α2-antiplasmin complexes with a novel monoclonal antibody based radioimmunoassay. Thromb Haemost 67(1):111–116

    Google Scholar 

  95. Levi M, Hack CE, De Boer JP, Brandjes DPM, Büller HR, Wouter ten Cate J (1991) Reduction of contact activation related fibrinolytic activity in factor XII deficient patients. Further evidence for the role of the contact system in fibrinolysis in vivo. J Clin Invest 88:1155–1160

    Google Scholar 

  96. Smith D, Gilbert M, Owen WG (1985) Tissue plasminogen activator release in vivo in response to vasoactive agents. Blood 66:835–839

    Google Scholar 

  97. Nuijens JH, Huijbregts CC, Eerenberg-Belmer AJ, Abbink JJ, Strack van Schijndel RJ, Felt-Bersma RJ, Thijs LG, Hack CE (1988) Quantification of plasma factor XIIa-C1-inhibitor and kallikrein-C1-inhibitor complexes in sepsis. Blood 72:1841–1848

    Google Scholar 

  98. Colman RW, Edelman R, Scott CF, Gilman RM (1978) Plasma kallikrein activation and inhibition during typhoid fever. J Clin Invest 61:287–296

    Google Scholar 

  99. Mason JM, Kleeberg V, Dolan P, Colman RW (1970) Plasma kallikrein and Hageman factor in gram-negative bacteremia. Ann Intern Med 73:545–551

    Google Scholar 

  100. Robinson JA, Kloduycky ML, Lock HH, Racic MR, Gunner RM (1975) Endotoxin, prekallikrein, complement and systemic vascular resistance sequential measurements in man. Am J Med 59:61–67

    Google Scholar 

  101. Hack CE, Nuijens JH, Strack van Schijndel RJM, Abbink JJ, Eerenberg AJM, Thijs LG (1990) A model for the interplay of inflammatory mediators in sepsis — a study in 48 patients. Intensive Care Med 16:187–191

    Google Scholar 

  102. De La Cadena RA, Suffredini AF, Kaufman N, Parrillo JE, Colman RW (1990) Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Clin Res 38:346A

    Google Scholar 

  103. Pixley RA, DeLa Cadena RA, Page JD, Kaufman N, Wyshock EG, Colman RW, Chang A, Taylor FB Jr (1992) Activation of the contact system in lethal hypotensive bacteremia in a baboon model. Am J Pathol 140:897–906

    Google Scholar 

  104. Kaufman N, Page JD, Pixley RA, Schein R, Schmaier AH, Colman RW (1991) α2-Macrogbulin-kallikrein complexes detect contact system activation in hereditary angioedema and human sepsis. Blood 77:2660–2667

    Google Scholar 

  105. Abbink JJ, Nuijens JH, Eerenberg AJM, Huijbregts CCM, Strack van Schijndel RJM, Thijs LG, Hack CE (1991) Quantification of functional and inactivated α2-macrogbulin in sepsis. Thromb Haemost 65:32–39

    Google Scholar 

  106. Pixley RA, De La Cadena R, Page JD, Kaufman N, Wyshock EG, Chang A, Taylor FB Jr, Colman RW (1992) The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia: In vivo use of a monoclonal antifactor XII antibody to block contact activation in baboons. J Clin Invest (in press)

  107. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Marston Lineman W, Robertson CN, Lee RA, Rubin JT, Seipp C, Simpson CG, White DE (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897

    Google Scholar 

  108. Rosenberg SA, Lotze MT, Mule JJ (1988) New approaches to the immunotherapy of cancer using interleukin-2. Ann Intern Med 108:853–864

    Google Scholar 

  109. Rosenstein M, Ettinghausen SE, Rosenberg SA (1986) Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin-2. J Immunol 137:1735–1742

    Google Scholar 

  110. Kovacs EJ, Brock B, Varesio L, Young HA (1989) IL-2 induction of Il-1β mRNA expression in monocytes. J Immunol 143:3532–3537

    Google Scholar 

  111. Nedwin GE (1985) Effect of interleukin 2, interferon-γ, and mitogens on the production of tumor necrosis factors α en β. J Immunol 135:2492–2497

    Google Scholar 

  112. Mier JW, Vachino G, Klempner MS, Aronson FR, Noring R, Smith S, Brandon EP, Laird W, Atkins MB (1990) Inhibition of interleukin-2-induced tumor necrosis factor release by dexamethasone: prevention of an acquired neutrophil chemotaxis defect and differential suppression of interleukin-2-associated side effects. Blood 10:1933–1940

    Google Scholar 

  113. Boccoli G, Masciulli R, Ruggeri EM, Carlini P, Giannella G, Montesoro E, Mastroberardino G, Isacchi G, Testa U, Calabresi F, Peschle C (1990) Adoptive immunotherapy of human cancer: The cytokine cascade and monocyte activation following high-dose interleukin 2 bolus treatment. Cancer Res 50:5795–5800

    Google Scholar 

  114. Kasid A, Director EP, Rosenberg SA (1989) Induction of endogenous cytokine-mRNA in circulating peripheral blood mononuclear cells by IL-2 administration to cancer patients. J Immunol 143:736–739

    Google Scholar 

  115. Mier JW, Vachino G, Van der Meer JW, Numerof RP, Adams S, Cannon JG, Bernheim HA, Atkins MB, Parkinson DR, Dinarello CA (1988) Induction of circulating tumor necrosis factor (TNF alpha) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol 8:426–436

    Google Scholar 

  116. Jablons DM, Mul' JJ, McIntosh JK, Sehgal PB, May LT, Huang CM, Rosenberg SA, Lotze MT (1989) IL-6/IFN-β-2 as a circulating hormone. Induction by cytokine administration in humans. J Immunol 142:1542–1547

    Google Scholar 

  117. Gemlo BT (1988) Circulating cytokines in patients with metastatic cancer treated with recombinant interleukin 2 and lymphokine-activated killer cells. Cancer Res 48:5864–5867

    Google Scholar 

  118. Dinarello CA (1991) The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis 163:1177–1184

    Google Scholar 

  119. Baars JW, Hack CE, Wagstaff J, Eerenberg-Belmer AJM, Wolbink GJ, Thijs LG, Strack van Schijndel RJM, Van der Vall HLJA, Pinedo HM (1992) The activation of polymorphonuclear neutrophils and the complement system during immunotherapy with recombinant interleukin-2. Br J Cancer 65:96–101

    Google Scholar 

  120. Sagone AL, Husney RM, Triozzi PL, Rinehart J (1991) Interleukin-2 therapy enhances salicylate oxidation of blood granulocytes. Blood 78:2931–2936

    Google Scholar 

  121. Thijs LG, Hack CE, Strack van Schijndel RJM, Nuijens JH, Wolbink GJ, Eerenberg-Belmer AJM, Vall van der H, Wagstaff J (1989) Complement activation and high-dose of interleukin-2. Lancet II:395

    Google Scholar 

  122. Thijs LG, Hack CE, Strack van Schijndel RJM, Nuijens JH, Wolbink GJ, Eerenberg-Belmer AJM, Vall van der H, Wagstaff J (1990) Activation of the complement system during immunotherapy with recombinant Interleukin-2: Relation to the development of side effects. J Immunol 144:2419–2424

    Google Scholar 

  123. Vachino G, Gelfand JA, Atkins MB, Tamerius JD, Demachak P, Mier JW (1991) Complement activation in cancer patients undergoing immunotherapy with interleukin-2 (IL-2): binding of complement and C-reactive protein by IL-2-activated lymphocytes. Blood 78:2505–2513

    Google Scholar 

  124. Moore FD Jr (1991) The systemic complement activation caused by interleukin-2/Lymphokine-activated killer-cel therapy of cancer causes minimal systemic neutrophil activation. J Cancer 49:504–508

    Google Scholar 

  125. Baars JW MD (1992) Interleukine-2 induces activation of coagulation and fibrinolysis: resemblance to the changes seen during experimental endotoxaemia. Br J Haematol 82:295–301

    Google Scholar 

  126. Hack CE, Wagstaff J, Strack van Schijndel RJM, Eerenberg AJM, Pinedo HM, Thijs LG, Nuijens JH (1991) Studies on the contact system of coagulation during therapy with high doses of recombinant IL-2: implications for septic shock. Thromb Haemost 65:497–503

    Google Scholar 

  127. Carrell RW, Travis J (1985) α1-antitrypsin and the serpins: variation and countervariation. Trends Biochem Sci 20–24

  128. Schapira M, Agostini de A, Schifferli JA, Colman RW (1985) Biochemistry and pathophysiology of human C1 inhibitor: current issues. Complement 2:111–126

    Google Scholar 

  129. Cooper NR (1985) The classical complement pathway: activation and regulation of the first complement component. Adv Immunol 37:151–216

    Google Scholar 

  130. Chan JYC, Burrowes CE, Habal FJ, Movat HZ (1977) The inhibition of activated factor XII (Hageman factor) by antithrombin III: effect of other plasma proteinase inhibitors. Biochem Biophys Res Commun 74:150–158

    Google Scholar 

  131. Schapira M, Scott CF, Colman RW (1982) Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma. J Clin Invest 69:462–468

    Google Scholar 

  132. Mason DT, Melmon KL (1965) Effects of bradykinin on fore-arm venous tone and vascular resistance in man. Circ Res 17:106–113

    Google Scholar 

  133. Perlmutter DH, Glover GI, Rivetna M, Schasteen CS, Fallon RJ (1990) Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci USA 87:3753–3757

    Google Scholar 

  134. Pizzo SV, Mast AE, Feldman SR, Salvesen G (1988) In vivo catabolism of α1-antichymotrypsin is mediated by the serpin receptor which binds α1-proteinase inhibitor, antithrombin III and heparin cofactor II. Biochim Biophys Acta 967:158–162

    Google Scholar 

  135. Nuijens JH, Eerenberg-Belmer AJM, Huijbregts CCM, Schreuder WO, Felt-Bersma RJF, Abbink JJ, Thijs LG, Hack CE (1989) Proteolytic inactivation of plasma C1-Inhibitor in sepsis. J Clin Invest 84:443–450

    Google Scholar 

  136. Woo P, Lachmann PJL, Harrison RA, Amos N (1985) Simultaneous turnover of normal and dysfunctional C1 Inhibitor as a probe of in vivo activation of C1 and contact activatable protease. Clin Exp Immunol 61:1–8

    Google Scholar 

  137. Quastel M, Harrison R, Cicardi M, Alper CA, Rosen FS (1983) Behavior in vivo of normal and dysfunctional C1 inhibitor in normal subjects and patients with hereditary angioneurotic edema. J Clin Invest 71:1041–1046

    Google Scholar 

  138. de Smet BJGL, De Boer JP, Agterberg J, Rigter G, Bleeker WK, Hack CE (1993) Clearance of human native, proteinase-complexed, and proteolytically inactivated C1-inhibitor in rats. Blood 81:56–61

    Google Scholar 

  139. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Google Scholar 

  140. Brower MS, Harpel PC (1982) Proteolytic cleavage and inactivation of α2-plasmin inhibitor and C1-Inactivator by human polymorphonuclear leucocyte elastase. J Biol Chem 257:9849–9854

    Google Scholar 

  141. Agostoni A, Bergamaschini L, Martignoni G, Cicardi M, Marasini B (1980) Treatment of acute attacks of hereditary angioedema with C1-inhibitor concentrate. Ann Allergy 44:299–301

    Google Scholar 

  142. Gadek JE, Hasea SW, Gelfand JA, Santaella M, Wickerhauser M, Triantaphyllopoulos DC, Frank MM (1980) Replacement therapy in hereditary angioedema. Successful treatment of acute episodes of angioedema with partly purified C1 inhibitor. N Engl J Med 302:542–546

    Google Scholar 

  143. Bork K, Witzke G (1989) Long-term prophylaxis with C1-inhibitor (C1 INH) concentrate in patients with recurrent angioedema caused by hereditary and acquired C1-inhibitor deficiency. J Allergy Clin Immunol 83:677–682

    Google Scholar 

  144. Hack CE, De Groot ER, Felt-Bersma RJF, Nuijens JH, Van Schijndel RJMS, Eerenberg-Belmer AJM, Thijs LG, Aarden LA (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74:1704–1710

    Google Scholar 

  145. Hack CE, Voerman HJ, Eisele B, Keinecke H-O, Nuijens JH, Eerenberg AJM, Ogilvie A, Strack van Schijndel RJM, Delvos U, Thijs LG (1992) C1-esterase inhibitor substitution in sepsis. Lancet 339:378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, C.E., Ogilvie, A.C., Eisele, B. et al. C1-inhibitor substitution therapy in septic shock and in the vascular leak syndrome induced by high doses of interleukin-2. Intensive Care Med 19 (Suppl 1), S19–S28 (1993). https://doi.org/10.1007/BF01738946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738946

Key words

Navigation