Journal of Molecular Evolution

, Volume 8, Issue 1, pp 1–12 | Cite as

Simulation studies on the evolution of amino acid sequences

  • Tomoko Ohta


A model of molecular evolution in which the parameter (intrinsic rate of amino acid substitution) fluctuates from time to time was investigated by simulating the process. It was found that the usual method of estimation such as Poisson fitting underestimates this variation of the parameter when remote comparisons are made. At the same time, four distance measures (minimum base difference, Poisson fitting, random nucleotide substitutions and negative binomial fitting) were tested for their accuracy. When the substitution rate is not uniform among the amino acid sites, the negative binomial fitting gives most satisfactory results, however, one needs to know the parameter beforehand in order to use this method. It was pointed out that the fluctuation of the evolutionary rate is expected if the nearly neutral but very slightly deleterious mutations play an important role on molecular evolution.

Key words

Amino Acid Substitution Constancy of the Evolutionary Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beyer, W.A., Stein, M.L., Smith, T.F., Ulam, S.M. (1974). Math.Biosci. 19, 9Google Scholar
  2. Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington: National Biomedical Research FoundationGoogle Scholar
  3. Farris, J.S. (1973). Am.Nat. 107, 531Google Scholar
  4. Fitch, W.M. (1971). Syst.Zool. 20, 406Google Scholar
  5. Fitch, W.M., Margoliash, E. (1967). Science 155, 279Google Scholar
  6. Grantham, R. (1974). Science 185, 862Google Scholar
  7. Goodman, M., Moore, G.W., Matsuda, G. (1975). Nature 253, 603Google Scholar
  8. Holmquist, R. (1972a). J.Mol.Evol. 1, 115Google Scholar
  9. Holmquist, R. (1972b). J.Mol.Evol. 1, 134Google Scholar
  10. Jukes, T.H., Cantor, C.R. (1969). In: Mammalian protein metabolism, H.N. Munro, ed., pp. 21–132. New York: Academic PressGoogle Scholar
  11. Kimura, M. (1968). Nature 217, 624Google Scholar
  12. Kimura, M. (1969). Proc.Natl.Acad.Sci. 63, 1181Google Scholar
  13. Kimura, M., Ohta, T. (1972). J.Mol.Evol. 2, 87Google Scholar
  14. King, M.C., Wilson, A.C. (1975). Science 188, 107Google Scholar
  15. Langley, C.H., Fitch, W.M. (1974). J.Mol.Evol. 3, 161Google Scholar
  16. Margoliash, E., Smitch, E.L. (1965). In: Evolving genes and proteins, V. Bryson, H.J. Vogel, eds., pp. 221–242. New York: Academic PressGoogle Scholar
  17. Nei, M., Chakraborty, R. (1976). J.Mol.Evol. (in press)Google Scholar
  18. Ohta, T. (1973). Nature 246, 96Google Scholar
  19. Ohta, T. (1974). Nature 252, 351Google Scholar
  20. Ohta, T., Kimura, M. (1971). J.Mol.Evol. 1, 18Google Scholar
  21. Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1973). Nature 246, 389Google Scholar
  22. Uzzell, T., Corbin, K.W. (1971). Science 172, 1089Google Scholar
  23. Van Valen, L. (1974). J.Mol.Evol. 3, 89Google Scholar
  24. Zuckerkandl, E., Pauling, L. (1965). In: Evolving genes and proteins, V. Bryson, H.J. Vogel, eds., pp. 97–166. New York: Academic PressGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Tomoko Ohta
    • 1
  1. 1.National Institute of GeneticsMishima Shizuoka-KenJapan

Personalised recommendations