Journal of Muscle Research & Cell Motility

, Volume 12, Issue 4, pp 321–332 | Cite as

Amino acid sequences of myosin essential and regulatory light chains from two clam species: Comparison with other molluscan myosin light chains

  • Winifred W. Barouch
  • Kimberly E. Breese
  • Stephanie -Alexis Davidoff
  • John Leszyk
  • Andrew G. Szent-Györgyi
  • Janet L. Theibert
  • John H. Collins


We have determined the amino acid sequences of the essential light chains (ELC) and regulatory light chains (RLC) of myosin from two species of clam,Mercenaria mercenaria andMacrocallista nimbosa, using protein chemistry methods. The N-termini of all four proteins were blocked, and sequencing was carried out on various chemically and enzymatically produced peptide fragments. Cleavage of eitherMercenaria RLC (MRLC) orMacrocallista RLC (VLC) at its 3 Arg yielded four peptides, three of which could not be sequenced directly, due to an N-terminal blocking group and 2 Arg-Gln bonds in these proteins. The fourth peptide was partially and specifically cleaved at an unusually reactive residue, Met-64, which is invariant in all known RLC sequences. A comparison of all available molluscan ELC and RLC sequences was carried out in search of clues to functionally important features of these proteins in muscles which are regulated by a Ca2+-sensitive myosin. By analogy with other RLCs, VRLC and MRLC may be phosphorylated at Ser-11 by an endogenous kinase. All myosin light chains, like troponin C and calmodulin, contain four homologous regions, I to IV, each of which contains a twelve-residue potential Ca2+-binding loop flanked on either side by a pair of helices. All RLCs, including those from Ca2+-insensitive myosins, contain a divalent cation-binding site in region I. Clam and other molluscan ELCs contain a single Ca2+-binding site in region III. This site is present only in the ELCs of myosins that are regulated by direct binding of Ca2+. The ELC site III is likely to play a key role in the regulation of molluscan muscle contraction.


Peptide Amino Acid Sequence Light Chain Myosin Light Chain Blocking Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashiba, G. &Szent-Györgyi, A. G. (1985) Essential light chain exchange in scallop myosin.Biochem. 24, 6618–23.Google Scholar
  2. Baba, M. L., Goodman, M., Berger-Cohn, J., Demaille, J. G. &Matsuda, G. (1984) The early adaptive evolution of calmodulin.Mol. Biol. Evol. 1, 442–55.PubMedGoogle Scholar
  3. Bagshaw, C. R. &Kendrick-Jones, J. (1979) Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy.J. Mol. Biol. 130, 317–36.PubMedGoogle Scholar
  4. Barouch, W. W. (1990) Carboxypeptidase P cleaves Lys-Lys.Peptide Research 3, 73–4.PubMedGoogle Scholar
  5. Bechet, J.-J. &Houadjeto, M. (1989) Prediction of the secondary structure of myosin light chains from comparison of homologous sequences. Implications for the interaction between myosin heavy and light chains.Biochim. Biophys. Acta 996, 199–208.PubMedGoogle Scholar
  6. Boguta, G., Stepkowski, D. &Bierzynski, A. (1988a) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. I. Estimation procedure.J. Theor. Biol. 135, 41–61.PubMedGoogle Scholar
  7. Boguta, G., Stepkowski, D. &Bierzynski, A. (1988b) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. II. Applications.J. Theor. Biol. 135, 63–73.PubMedGoogle Scholar
  8. Chantler, P. D. &Szent-Györgyi, A. G. (1980) Regulatory light-chains and scallop myosin: full dissociation, reversibility and co-operative effects.J. Mol. Biol. 138, 473–92.PubMedGoogle Scholar
  9. Chantler, P. D. &Tao, T. (1986) Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.J. Mol. Biol. 192, 87–99.PubMedGoogle Scholar
  10. Chantler, P. D. &Bower, S. M. (1988) Cross-linking between translationally equivalent sites on the two heads of myosin.J. Biol. Chem. 263, 938–44.PubMedGoogle Scholar
  11. Collins, J. H. (1974) Homology of myosin light chains, troponin C and parvalbumins deduced from comparison of their amino acid sequences.Biochem. Biophys. Res. Commun. 58, 301–8.PubMedGoogle Scholar
  12. Collins, J. H. (1976a) Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin.Nature 259, 699–700.PubMedGoogle Scholar
  13. Collins, J. H. (1976b) Structure and evolution of troponin C and related proteins.Soc. Exp. Biol. Symp. 30, 303–334.Google Scholar
  14. Collins, J. H. (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons.J. Muscle Res. & Cell Motil.,12, 3–25.Google Scholar
  15. Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G. &Jackman, N. (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle.FEBS Lett 36, 268–72.PubMedGoogle Scholar
  16. Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-Györgyi, A. G. (1986) Amino acid sequence of myosin essential light chain from the scallopAquipeden irradians.Biochem. 25, 7651–6.Google Scholar
  17. Collins, J. H., Cox, J. A. &Theibert, J. L. (1988) Amino acid sequence of a sarcoplasmic calcium binding protein from the sandwormNereis diversicolor. J. Biol. Chem.263, 15378–85.PubMedGoogle Scholar
  18. Fontana, A. (1972) Modification of tryptophan with BNPS-Skatole.Methods Enzymol. 25, 419–23.Google Scholar
  19. Garnier, J., Osguthorpe, D. J. &Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins.J. Mol. Biol. 120, 97–120.PubMedGoogle Scholar
  20. Goodwin, E. B., Szent-Györgyi, A. G. &Leinwand, L. (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs.J. Biol. Chem. 262, 11052–6.PubMedGoogle Scholar
  21. Goodwin, E. B., Leinwand, L. A. &Szent-Györgyi, A. G. (1990) Regulation of scallop myosin by mutant regulatory light chains.J. Mol. Biol.,216, 85–93.PubMedGoogle Scholar
  22. Gurd, F. R. N. (1967) Carboxymethylation of proteins.Methods Enzymol. 11, 532–41.Google Scholar
  23. Hardwicke, P. M. D., Walliman, T. &Szent-Györgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. I. Protection of essential light chain thiol groups by regulatory light-chains.J. Mol. Biol. 156, 141–52.PubMedGoogle Scholar
  24. Hardwicke, P. M. D., Walliman, T. &Szent-Györgyi, A. G. (1983) Light-chain movement and regulation in scallop myosin.Nature 249, 478–82.Google Scholar
  25. Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1985) Proximity of regulatory light chains in scallop myosin.J. Mol. Biol. 183, 203–11.PubMedGoogle Scholar
  26. Heinrikson, R. L. &Meredith, S. C. (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocynate.Anal. Biochem. 136, 65–74.PubMedGoogle Scholar
  27. Herzberg, O. &James, M. N. G. (1985) Common structural frame-work of the two Ca/Mg binding loops of troponin C and other Ca binding proteins.Biochemistry 24, 5298–302.PubMedGoogle Scholar
  28. Hirs, C. H. W. (1967) Reduction and S-carboxymethylation of proteins.Methods Enzymol. 11, 199–203.Google Scholar
  29. Kendrick-Jones, J. &Scholey, J. M. (1981) Myosin-linked regulatory systems.J. Muscle Res. & Cell Motil. 2, 347–72.Google Scholar
  30. Kendrick-Jones, J., Lehman, W. &Szent-Györgyi, A. G. (1970) Regulation in molluscan muscles.J. Mol. Biol. 54, 313–26.PubMedGoogle Scholar
  31. Kendrick-Jones, J. &Jakes, R. (1977) Myosin-linked regulation: a chemical approach. InMyocardial Failure: International Boehringer Symposium, Munich, (edited byIcker, G., Weber, A. &Goodwin, J.) Pp. 28–40. Berlin: Springer-Verlag.Google Scholar
  32. Kendrick-Jones, J., Szentkiralyi, E. M. &Szent-Györgyi, A. G. (1976) Regulatory light chains in myosins.J. Mol. Biol. 104, 747–75.PubMedGoogle Scholar
  33. Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D. &Szent-Györgyi, A. G. (1990) Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.Proc. Natl Acad. Sci. USA,87, 4771–5.PubMedGoogle Scholar
  34. Landon, M. (1977) Cleavage at aspartyl-propyl bonds.Methods Enzymol. 47, 145–9.PubMedGoogle Scholar
  35. Leszyk, J., Dumaswala, R., Potter, J. D., Gusev, N. B., Verin, A. D., Tobacman, L. S. &Collins, J. H. (1987) Bovine cardiac troponin T: amino acid sequences of the two isoforms.Biochem. 26, 7035–42.Google Scholar
  36. Leszyk, J., Dumaswala, R., Potter, J. D. &Collins, J. H. (1988) Amino acid sequence of troponin I from bovine cardiac muscle.Biochem. 27, 2821–27.Google Scholar
  37. Maita, T., Konno, K., Ojima, T. &Matsuda, G. (1984) Amino acid sequences of the regulatory light chains of striated adductor muscle myosins from Ezo giant scallop and Akazara scallop.J. Biochem. 95, 167–77.PubMedGoogle Scholar
  38. Maita, T., Konno, K., Maruta, S., Norisue, H. &Matsuda, G. (1987a) Amino acid sequence of the essential light chain of adductor muscle myosin from Ezo giant scallop,Patinopecten yessoensis.J. Biochem. 102, 1141–49.PubMedGoogle Scholar
  39. Maita, T., Tanaka, H., Konno, K. &Matsuda, G. (1987b) Amino acid sequence of the regulatory light chain of squid mantle muscle myosin.J. Biochem. 102, 1151–7.PubMedGoogle Scholar
  40. Matsuda, G. (1983) The light chains of muscle myosin: its structure, function and evolution.Adv. Biophys. 16, 185–218.PubMedGoogle Scholar
  41. Miyanishi, T., Maita, T., Morita, F., Kondo, S. &Matsuda, G. (1985) Amino acid sequences of the two kinds of regulatory light chains of adductor smooth muscle myosin fromPatinopecten yessoensis.J. Biochem. 97, 541–51.PubMedGoogle Scholar
  42. Okamoto, Y., Sekine, T., Grammer, J. &Yount, R. G. (1986) The essential light chains constitute part of the active site of smooth muscle myosin.Nature 324, 78–80.PubMedGoogle Scholar
  43. Reinach, F. C., Nagai, K. &Kendrick-Jones, J. (1986) Site-directed mutagenesis of the regulatory light-chain Ca/Mg binding site and its role in hybrid myosins.Nature 322, 80–3.PubMedGoogle Scholar
  44. Saimi, Y., Martinac, B., Gustin, M. C., Culbertson, M. R., Adler, J. &Kung, C. (1988) Ion channels inParamecium, yeast andEscherichia coli.Trends Biochem. Sci. 13, 304–9.PubMedGoogle Scholar
  45. Sellers, J. R., Chantler, P. D. &Szent-Györgyi, A. G. (1980) Hybrid formation between scallop myofibrils and foreign regulatory light chains.J. Mol. Biol. 144, 223–45.PubMedGoogle Scholar
  46. Simmons, R. M. &Szent-Györgyi, A. G. (1978) Control of tension development in scallop muscle fibres with foreign regulatory light chains.Nature 273, 62–4.PubMedGoogle Scholar
  47. Simmons, R. M. &Szent-Györgyi, A. G. (1985) A mechanical study of regulation in the striated adductor muscle of the scallop.J. Physiol. 358, 47–64.PubMedGoogle Scholar
  48. Smith, V. L., Doyle, K. E., Maune, J. F., Munjaal, R. P. &Beckingham, K. (1987) Structure and sequence of theDrosophila melanogaster calmodulin gene.J. Mol. Biol. 196, 471–85.PubMedGoogle Scholar
  49. Sohma, H., Yazawa, M. &Morita, F. (1985) Phosphorylation of regulatory light chain-a (RLC-a) in smooth muscle myosin of scallopPatinopecten yessoensis.J. Biochem. 98, 569–72.PubMedGoogle Scholar
  50. Sohma, H. &Morita, F. (1986) Purification of a protein kinase phosphorylating myosin regulatory light chain-a (RLC-a) from smooth muscle of scallopPatinopecten yessoensis.J. Biochem. 100, 1155–63.PubMedGoogle Scholar
  51. Stafford, W. F., Szentkiralyi, E. M. &Szent-Györgyi, A. G. (1979) Regulatory properties of single-headed fragments of scallop myosin.Biochem. 18, 5273–80.Google Scholar
  52. Szentkiralyi, E. M. (1984) Tryptic digestion of scallop S1: evidence for a complex between the two light-chains and a heavy-chain peptide.J. Muscle Res. Cell Motil. 5, 147–64.PubMedGoogle Scholar
  53. Szent-Györgyi, A. G., Szentkiralyi, E. M. &Kendrick-Jones, J. (1973) The light chains of scallop myosin as regulatory subunits.J. Mol. Biol. 74, 179–203.PubMedGoogle Scholar
  54. Takahashi, M., Sohma, H. &Morita, F. (1988) The steady state intermediate of scallop smooth muscle myosin ATPase and effect of light chain phosphorylation. A molecular mechanism for catch contraction.J. Biochem. 104, 102–7.PubMedGoogle Scholar
  55. Tanaka, H., Maita, T., Ojima, T., Nishita, K. &Matsuda, G. (1988) Amino acid sequence of the regulatory light chain of clam foot muscle myosin.J. Biochem. 103, 572–80.PubMedGoogle Scholar
  56. Trayer, I. P., Trayer, H. R. &Levine, B. A. (1987) Evidence that the N-terminal region of Al-light chain of myosin interacts directly with the C-terminal region of actin.Eur. J. Biochem. 164, 259–66.PubMedGoogle Scholar
  57. Walliman, T. &Szent-Györgyi, A. G. (1981) An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain.Biochem. 20, 1188–97.Google Scholar
  58. Walliman, T., Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. II. Photochemical cross-linking of regulatory and essential light-chains by heterobifunctional reagents.J. Mol. Biol. 156, 153–73.PubMedGoogle Scholar
  59. Watanabe, B., Maita, T., Konno, K. &Matsuda, G. (1986) Amino acid sequence of LC-1 light chain of squid mantle muscle myosin.Biol. Chem. Hoppe-Seyler 367, 1025–32.PubMedGoogle Scholar
  60. Wells, C. &Bagshaw, C. R. (1985) Calcium regulation of molluscan myosin ATPase in the absence of actin.Nature 313, 696–7.PubMedGoogle Scholar
  61. Winkelman, D. A., Almeda, S., Vibert, P. &Cohen, C. (1984) A new myosin fragment: visualization of the regulatory domain.Nature 307, 758–60.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Winifred W. Barouch
    • 3
  • Kimberly E. Breese
    • 3
  • Stephanie -Alexis Davidoff
    • 1
    • 2
  • John Leszyk
    • 1
    • 2
  • Andrew G. Szent-Györgyi
    • 4
  • Janet L. Theibert
    • 1
    • 2
  • John H. Collins
    • 1
    • 2
  1. 1.Department of Biological ChemistrySchool of MedicineUSA
  2. 2.Medical Biotechnology Center of the Maryland Biotechnology InstituteUniversity of MarylandBaltimoreUSA
  3. 3.Departments of Chemistry and BiologyClarkson UniversityPotsdamUSA
  4. 4.Department of BiologyBrandeis UniversityWalthamUSA

Personalised recommendations