Journal of Muscle Research & Cell Motility

, Volume 12, Issue 6, pp 503–506 | Cite as

Involvement of weak binding crossbridges in force production in muscle

  • Joseph M. Chalovich
  • Leepo C. Yu
  • Bernhard Brenner
News and Views

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S., DasGupta, G., Chalovich, J. M. &Reisler, E. (1990) Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin.J. Biol. Chem. 265, 19652–7.PubMedGoogle Scholar
  2. Bartegi, A., Fattoum., A. &Kassab, R. (1990) Crosslinking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin.J. Biol. Chem. 265, 2231–7.PubMedGoogle Scholar
  3. Brenner, B. (1988) Effect of Ca2+ on crossbridge turnover kinetics in skinned single rabbit psoas fibres: implications for regulation of muscle contraction.Proc. Natn. Acad. Sci. USA 85, 3265–9.Google Scholar
  4. Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1982) Evidence for crossbridge attachment in relaxed muscle at low ionic strength.Proc. Natn. Acad. Sci. USA 79, 7288–91.Google Scholar
  5. Brenner, B., Yu, L. C., Greene, L. C., Eisenberg, E. &Schoenberg, M. (1986) Ca2+-sensitive crossbridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers.Biophys. J. 50, 1101–8.PubMedGoogle Scholar
  6. Brenner, B., Yu, L. C. &Chalovich, J. M. (1991) Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon.Proc. Natn Acad. Sci. USA 88, 5739–43.Google Scholar
  7. Chalovich, J. M. &Eisenberg, E. (1982) Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin.J. Biol. Chem. 257, 2432–7.PubMedGoogle Scholar
  8. Chalovich, J. M., Chock, P. B. &Eisenberg, E. (1981) Mechanism of action of troponin-tropomyosin: inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin.J. Biol. Chem. 256, 575–8.PubMedGoogle Scholar
  9. Chalovich, J. M., Cornelius, P. &Benson, C. E. (1987) Caldesmon inhibits skeletal actomyosin subfragment-1 ATPase activity and the binding of myosin subfragment-1 to actin.J. Biol. Chem. 262, 5711–6.PubMedGoogle Scholar
  10. Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1983) Crosslinked myosin subfragment-1: a stable analogue of the subfragment-1-ATP complex.Proc. Natn Acad. Sci. USA 80, 4909–13.Google Scholar
  11. Eisenberg, E., Dobkin, L. &Kielley, W. (1972) Heavy meromyosin: evidence for a refractory state unable to bind to actin in the presence of ATP.Proc. Natn Acad. Sci. USA 69, 667–71.Google Scholar
  12. Greene, L. E. &Eisenberg, E. (1980a) Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex.Proc. Natn Acad. Sci. USA 77, 2616–20.Google Scholar
  13. Greene, L. E. &Eisenberg, E. (1980b) Dissociation of the actin-subfragment-1 complex by adenyl-5′-yl imidodiphosphate, ADP and PPi.J. Biol Chem. 255, 543–8.PubMedGoogle Scholar
  14. Haselgrove, J. C. (1973) X-ray evidence for a conformation change in the actin containing filaments of vertebrate striated muscle.Cold Spring Harbor Symp. Quant. Biol. 37, 341–52.Google Scholar
  15. Hemric, M. E. &Chalovich, J. M. (1988) Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin.J. Biol. Chem. 263, 1878–85.PubMedGoogle Scholar
  16. Hill, T. L. (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle.Prog. Biophys. Molec. Biol. 28, 267–340.Google Scholar
  17. Horiuchi, K. Y. &Chacko, S. (1989) Caldesmon inhibits the cooperative turning-on of the smooth muscle heavy meromyosin by tropomyosin-actin.Biochemistry 28, 9111–6.PubMedGoogle Scholar
  18. Horiuchi, K. Y., Samuel, M. &Chacko, S. (1991) Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon.Biochemistry 30, 712–17.PubMedGoogle Scholar
  19. Huxley, H. E. (1973) Structural changes in the actin and myosin containing filaments during contraction.Cold Spring Harbor Symp. Quant. Biol. 37, 361–76.Google Scholar
  20. Ikebe, M. &Reardon, S. (1988) Binding of caldesmon to smooth muscle myosin.J. Biol. Chem. 263, 3055–8.PubMedGoogle Scholar
  21. Kraft, T. H., Chalovich, J. M., Yu, L. C. &Brenner, B. (1991) Weak crossbridge binding is essential for force generation. Evidence at near physiological conditions.Biophys. J. 59, 375a.Google Scholar
  22. Levine, B. A., Moir, A. J. G., Audemard, E., Mornet, D., Patchell, V. B. &Perry, S. V. (1990) Structural study of gizzard caldesmon and its interaction with actin — binding involves residues of actin also recognized by myosin subfragment 1.Eur. J. Biochem. 193, 687–96.PubMedGoogle Scholar
  23. Lymn, R. W. &Taylor, E. W. (1971) Mechanisms of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.PubMedGoogle Scholar
  24. Marston, S. (1988) Aorta caldesmon inhibits actin activation of thiophosphorylated heavy meromyosin Mg2+-ATPase activity by slowing the rate of product release.FEBS Lett. 238, 147–50.PubMedGoogle Scholar
  25. Moody, C., Lehman, W. &Craig, R. (1990) Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments.J. Muscle Res. Cell Motil. 11, 176–85.PubMedGoogle Scholar
  26. Owada, M. K., Hakura, A., Iida, K., Yahara, I., Sobue, K. &Kakiuchi, S. (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells.Proc. Natn Acad. Sci. USA 81, 3133–7.Google Scholar
  27. Parry, D. A. D. &Squire, J. M. (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles.J. Mol. Biol. 75, 33–55.PubMedGoogle Scholar
  28. Riseman, V. M., Lynch, W. P., Neefsky, B. &Bretscher, A. (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule.J. Biol. Chem. 264, 2869–75.PubMedGoogle Scholar
  29. Sleep, J. A. &Hutton, R. L. (1978) Actin mediated release of ATP from myosin ATP-complex.Biochemistry 17, 5423–30.PubMedGoogle Scholar
  30. Smith, C. W. J., Pritchard, K. &Marston, S. B. (1987) The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.J. Biol. Chem. 262, 116–22.PubMedGoogle Scholar
  31. Sobue, K., Muramoto, Y., Fujita, M. &Kakiuchi, S. (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.Proc. Natn Acad. Sci. USA 78, 5652–5.Google Scholar
  32. Stein, L. A., Schwarz, R. P., Jr, Chock, P. B. &Eisenberg, E. (1979) Mechanism of actomyosin adenosine triphosphatase: evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.Biochemistry 18, 3895–909.PubMedGoogle Scholar
  33. Velaz, L. &Chalovich, J. M. (1991) Functional properties of the C-terminal actin binding fragments of caldesmon.Biophys. J. 59, 219a.Google Scholar
  34. Verlaz, L., Hemric, M. E., Benson, C. E. &Chalovich, J. M. (1989) The binding of caldesmon to actin and its effect on the ATPase activity of soluble myosin subfragments in the presence and absence of tropomyosin.J. Biol. Chem. 264, 9602–10.PubMedGoogle Scholar
  35. Velaz, L., Ingraham, R. H. &Chalovich, J. M. (1990) Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth heavy meromyosin to actin by partial digestion of caldesmon.J. Biol. Chem. 265, 2929–34.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Joseph M. Chalovich
    • 1
  • Leepo C. Yu
    • 2
  • Bernhard Brenner
    • 3
  1. 1.Department of BiochemistryEast Carolina University, School of MedicineGreenvilleUSA
  2. 2.Laboratory of Physical BiologyNIAMS, NIHBethesdaUSA
  3. 3.Department of General PhysiologyUniversity of UlmUlmGermany

Personalised recommendations