Skip to main content
Log in

Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Tetanic and twitch tension were recorded on isolated frog twitch fibres under experimental conditions modifying the influx of sodium ions. In current clamp conditions replacing Li+ for Na+ did not modify the electrical activity but drastically decreased the plateau of tetanic tension. In voltage clamp conditions replacing Li+ for Na+ did not modify the inward currents but induced a marked decrease of the plateau of the tetanic tension for depolarizations between the activation threshold and the reversal potential of sodium current. Under veratridine treatment, during tetanic depolarization, a slow inward sodium (or lithium) current developed. This induced a parallel increase of the tetanic tension which was much more pronounced in sodium than in lithium containing solution. The twitch tension obtained during short depolarization was increased by > 100% during veratridine treatment with a sizeable decrease (40%) of the delay between the end of depolarization and the beginning of tension. All these results could be reproduced in calcium-free solution. Our data confirm that the entry of sodium ions (and to a lesser extent of lithium ions) is able to modulate the release of calcium from the sarcoplasmic reticulum (SR). We discuss these results in terms of a model where sodium ions entering the compartment between the tubular membrane and the SR junctional membrane carry counter charges through the SR K+ channels and help to maintain the SR Ca2+ release. This could occur in particular during a physiological tetanic contraction where the junctional compartment is probably filled with Na+ ions and depleted of K+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramcheck, C. W. &Best, P. M. (1989) Physiological role and selectivity of thein situ potassium channel of the sarcoplasmic reticulum in skinned frog skeletal muscle fibres.J. Gen. Physiol. 93, 1–21.

    PubMed  Google Scholar 

  • Allard, B. (1990) Action des ions sodium dans le couplage excitation-contraction de la fibre musculaire squelettique rapide de grenouille. Thése de sciences, Lyon, pp. 1–189.

  • Allard, B. &Rougier, O. (1989) Action des ions sodium sur le couplage excitation-contraction de la fibre musculaire squelettique rapide de grenouille.Arch. Int. Physiol. Biochim. 97, A99.

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F. M. &Horowicz, P. (1972) Twitches in the presence of ethylene-glycol bis (β-aminoethylether) N,N′-tetraacetic acid.Biochim. Biophys. Acta 267, 605–8.

    PubMed  Google Scholar 

  • Caille, J., Ildefonse, M. &Rougier, O. (1978) Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction.Pflügers Arch. 374, 167–77.

    Google Scholar 

  • Caille, J., Ildefonse, M. &Rougier, O. (1979) Evidence for an action of sodium ions in the activation of contraction of twitch muscle fibre.Pflügers Arch. 379, 117–19.

    Google Scholar 

  • Caille, J., Ildefonse, M., Rougier, O. &Roy, G. (1981) Surface and tubular sodium currents in frog twitch muscle fibre; implication in excitation-contraction coupling. InMolecular Aspects of Muscle Function (edited by Varga, E., Kover, A., Kovacs, T. Kovacs, L.) pp. 389–409. Oxford: Pergamon Press.

    Google Scholar 

  • Caille, J., Ildefonse, M. &Rougier, O. (1985) Excitation-contraction coupling in skeletal muscle.Prog. Biophys. Mol. Biol. 46, 185–239.

    PubMed  Google Scholar 

  • Campbell, D. T. (1976) Ionic selectivity of the sodium channel of frog skeletal muscle.J. Gen. Physiol. 67, 295–307.

    PubMed  Google Scholar 

  • Coronado, R. &Miller, C. (1982) Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers.J. Gen. Physiol. 79, 529–47.

    PubMed  Google Scholar 

  • Curtis, B. A. (1988) Na/Ca exchange and excitation-contraction coupling in frog fast fibres.J. Muscle Res. Cell Motil. 9, 415–27.

    PubMed  Google Scholar 

  • Fabiato, A. &Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells.J. Physiol. (Paris) 75, 463–505.

    Google Scholar 

  • Fink, R. H. A. &Stephenson, D. G. (1987) Ca2+-movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes.Pflügers Arch. 409, 374–80.

    Google Scholar 

  • Ford, L. E. &Podolsky, R. J. (1970) Regenerative calcium release within muscle cells.Science 167, 58–9.

    PubMed  Google Scholar 

  • Huang, C. L. H. (1988) Intramembrane charge movement in skeletal muscle.Physiol. Rev. 68, 1197–247.

    PubMed  Google Scholar 

  • Ildefonse, M., Jacquemond, V., Rougier, O., Renaud, J. F., Fosset, M. &Lazdunski, M. (1985) Excitation-contraction coupling in skeletal muscle: evidence for a role of slow Ca++ channels using Ca++ channel activators and inhibitors in the dihydropyridine series.Biochem. Biophys. Res. Commun. 129, 904–9.

    PubMed  Google Scholar 

  • Jaimovich, E., Chicheportiche, R., Lombet, A., Lazdunski, M., Ildefonse, M. &Rougier, O. (1983) Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives.Pflügers Arch. 397, 1–5.

    Google Scholar 

  • Langer, G. A. (1980) The role of calcium in the control of myocardial contractility: an update.J. Mol. Cell. Cardiol. 12, 231–9.

    PubMed  Google Scholar 

  • Leblanc, N. &Hume, J. R. (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum.Science 248, 372–6.

    PubMed  Google Scholar 

  • Leibowitz, M. D., Sutro, J. B. &Hille, B. (1986) Voltage-dependent gating of veratridine-modified Na channels.J. Gen. Physiol. 87, 25–46.

    PubMed  Google Scholar 

  • Lüttgau, H. C. (1963) The action of calcium ions on potassium contractures of single muscle fibres.J. Physiol. 168, 679–97.

    PubMed  Google Scholar 

  • McKinley, D. &Meissner, G. (1978) Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. Membrane Biol. 44, 159–86.

    Google Scholar 

  • Martonosi, A. N. (1984) Mechanisms of Ca++ release from sarcoplasmic reticulum of skeletal muscle.Physiol. Rev. 64, 1240–320.

    PubMed  Google Scholar 

  • Meissner, G. &McKinley, D. (1976) Permeability of the sarcoplasmic reticulum membrane. The effect of changed ionic environments on Ca2+ release.J. Membrane Biol. 30, 79–98.

    Google Scholar 

  • Miller, C. (1978) Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: steady-state electrical properties.J. Membrane Biol. 40, 1–23.

    Google Scholar 

  • Moutin, M. J. &Dupont, Y. (1988) Rapid filtration studies of Ca++ induced-Ca++ release from skeletal sarcoplasmic reticulum. Role of monovalent ions.J. Biol. Chem. 263, 4228–35.

    PubMed  Google Scholar 

  • Palade, P. (1987) Drug-induced Ca++ release from isolated sarcoplasmic reticulum. I. use of pyrophosphate to study caffeine-induced Ca2+ release.J. Biol. Chem. 262, 6135–41.

    PubMed  Google Scholar 

  • Pizarro, G., Fitts, R., Uribe, I. &Rios, E. (1989) The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity.J. Gen. Physiol. 94, 405–28.

    PubMed  Google Scholar 

  • Potreau, D. &Raymond, G. (1980a) Slow inward Ba++current and contraction on frog single muscle fibres.J. Physiol. 303, 91–109.

    PubMed  Google Scholar 

  • Potreau, D. &Raymond, G. (1980b) Calcium dependent electrical activity and contraction of voltage-clamped frog single muscle fibres.J. Physiol 307, 9–22.

    PubMed  Google Scholar 

  • Potreau, D. &Raymond, G. (1982) Existence of a sodium-induced calcium release mechanism on frog skeletal muscle fibres.J. Physiol. 333, 463–80.

    PubMed  Google Scholar 

  • Rios, E. &Brum, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.

    PubMed  Google Scholar 

  • Schneider, M. F. (1981) Membrane charge movement and depolarization-contraction coupling.Ann. Rev. Physiol 43, 507–17.

    Google Scholar 

  • Schneider, M. F. &Chandler, W. K. (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 244–6.

    PubMed  Google Scholar 

  • Somlyo, A. V., Gonzalez-Serratos, H., Shuman, H., McLellan, G. &Somylo, A. P. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study.J. Cell Biol. 90, 577–94.

    PubMed  Google Scholar 

  • Sperelakis, N., Schneider, M. F. &Harris, E. Y. (1967) Decreased K+ conductance produced by Ba2+ in frog sartorius fibres.J. Gen. Physiol 50, 1565–83.

    PubMed  Google Scholar 

  • Standen, N. B. &Stanfield, P. R. (1978) A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.J. Physiol. 280, 169–91.

    PubMed  Google Scholar 

  • Sutro, J. B. (1986) Kinetics of veratridine action on Na channels of skeletal muscle.J. Gen. Physiol. 87, 1–24.

    PubMed  Google Scholar 

  • Ulbricht, W. (1969) The effect of veratridine on excitable membranes of nerve and muscle.Ergeb. Physiol. 61, 18–71.

    PubMed  Google Scholar 

  • Vergara, J., Tsien, R. Y. &Delay, M. (1985) Inositol 1, 4, 5-trisphosphate: a possible chemical link in excitation-contraction coupling.Proc. Natl Acad. Sci. USA 82, 6352–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allard, B., Rougier, O. Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle. J Muscle Res Cell Motil 13, 117–125 (1992). https://doi.org/10.1007/BF01738435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738435

Keywords

Navigation