Skip to main content
Log in

Biophysikochemische Strukturen des glomerulären Filters

The biophysicochemical structure of the glomerular filter

  • Zum Geleit
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The ultrastructural and the biophysical and biochemical qualities of glomerular permeability to protein molecules are reviewed. With regard to differently located immune deposition in human glomerulonephritis, description and discussion are addressed in a fixed order of layers: 1. endothelial-subendothelial, i.e. the endothelial cells with fenestrae and the lamina rara interna of the basement membrane (bm), 2. membranous, i.e. the lamina densa of the bm, 3. subepithelial-epithelial, i.e. the lamina rara externa of the bm and the podocytes with food processes and slit diaphragms. It is emphasized that the 3 layers act as gradually (coarse to fine) filter barriers. On the basis of well known structural peculiarities, in the last 10 years experimental studies revealed that the meshwork of type IV collagen and the negatively charged heparan sulfate-proteoglycans — “the glomerular polyanion” — are integrated in sieving of protein molecules. These components are differently located in the stratified cellular and extracellular layers of the glomerular filter and their combined action is the basis of a size, charge and configuration dependend filtration of macromolecules. In this way the passage of the mostly negative charge blood proteins, expecially albumin, is prevented under normal conditions.

Zusammenfassung

Die Feinstrukturen sowie die biophysikalischen und biochemischen Eigenschaften des glomerulären Filters für die Permeation von Makromolekülen werden dargestellt. Unter Berücksichtigung der unterschiedlich lokalisierten Immunkomplexablagerungen bei den verschiedenen Formen der Glomerulonephritis des Menschen orientieren sich Beschreibung und Diskussion an bestimmte Schichten des Filters: 1. endothelial — subendothelial (=porenhaltiges Endothel und lamina rara interna der Basalmembran), 2. membranös (=Lamina densa der Basalmembran) und 3. subepithelial — epithelial (=Lamina rara externa der Basalmembran und Podozyten mit Fußfortsätzen und Schlitzmembranen). Dabei wird hervorgehoben, daß die genannten Schichten Eigenschaften aufweisen, die eine zunehmend feinere Siebung von Makromolekülen aus dem Blut gewährleisten. Auf bekannte feinstrukturelle Besonderheiten des glomerulären Filters aufbauend, haben die experimentellen Untersuchungen der letzten 10 Jahre offenbart, daß ein Netzwerk von insbesondere Typ IV Collagen und die Existenz negativ geladener Heparansulfat-Proteoglykane („glomeruläres Polyanion“) wichtig für eine solche Siebung sind. Die Tatsache, daß die genannten Komponenten innerhalb der einzelnen Schichten in bestimmter Folge zellulär und extrazellulär lokalisiert sind, führt zu einem differenziert siebenden Filterapparat, der die Molekülgröße, die Konfiguration sowie die Ladung der Makromoleküle berücksichtigt. Dadurch wird der Durchtritt der zumeist negativ geladenen Blutproteine, insbesondere der von Albuminen, normalerweise verhindert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Abrahamson DR, Hein A, Caulfield JP (1981) Laminin in glomerular basement membranes of aminonucleoside nephrotic rats. Increased proteinuria induced by antilaminin immunglobulin. Lab Invest 49:38–47

    Google Scholar 

  2. Andrews PM (1978) Scanning electron microscopy of the kidney glomerular epithelium after treatment with polycations in situ and in vitro. Am J Anat 153:291–295

    Google Scholar 

  3. Andrews PM (1979) Glomerular epithelial alterations resulting from sialic acid surface coat removal. Kidney Int 15:376–385

    Google Scholar 

  4. Bankston PW, Milici AJ (1983) A survey of the binding of polycationic ferritin in several fenestrated capillary beds: Indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvascular Res 26:36–48

    Google Scholar 

  5. Arakawa M (1970) A scanning electron microscopy of the glomerulus of normal and nephrotic rats. Lab Invest 23:489–496

    Google Scholar 

  6. Bargmann W (1978) Das Nierenkörperchen, 39–102. In: W. Bargmann: Niere und ableitende Harnwege. Hdb mikrosk Anat d Menschen VII/5, Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Bariety J, Bellon B, Sapin C, Kuhn J, Druet P, Hinglais N, Girand J-P, Belair M-F, Paing M, Laliberte F (1981) Immunoenzymatic study of the protein pathway through the glomerular barrier in rat glomerulonephritides. Kidney Int 19:663–667

    Google Scholar 

  8. Barnes JL, Radnik RA, Gilchrist EP, Venkatachalam MA (1984) Size and charge selective permeability defects induced in glomerular basement membrane by a polycation. Kidney Int 25:11–19

    Google Scholar 

  9. Bennett HS (1963) Morphological aspects of extracellular polysaccherides. J Histochem Cytochem 11:14–23

    Google Scholar 

  10. Bohrer MP, Humes HD, Baylis C, Robertson CR, Brenner BM (1977) Facilitated transglomerular passage of circulating polycations. Clin Res 25:50A

    Google Scholar 

  11. Bohrer MP, Baylis C, Humes HD (1978) Permselectivity of the glomerular capillary wall: facilitated filtration of circulating polycations. J Clin Invest 61:72–78

    Google Scholar 

  12. Brenner BM, Hostetter TH, Humes HD (1978) Molecular basis of proteinuria of glomerular origin. New Engl J Med 298:826–833

    Google Scholar 

  13. Carlin B, Jaffe R, Bender B, Chung AE (1981) Enactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem 256:5209–5214

    Google Scholar 

  14. Caulfield JP, Farquhar MG (1974) The permeability of glomerular capillaries to graded dextrans. J Cell Biol 63:883–903

    Google Scholar 

  15. Caulfield JP, Farquhar MG (1976) Distribution of anionic sites in normal and nephrotic glomerular basement membranes. J Cell Biol 70:92a

    Google Scholar 

  16. Caulfield JP, Farquhar MG (1975) The permeability of glomerular capillaries of aminonucleoside nephrotic rats to graded dextrans. J Exper Med 142:61–83

    Google Scholar 

  17. Caulfield JP, Reid JJ, Farquhar MG (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest 34:43–59

    Google Scholar 

  18. Caulfield JP (1978) The distribution of anionic sites in the glomerular basement membrane of normal and nephrotic rats. 81–98. In: Kefalides NA, (ed.) Biology and Chemistry of Basement membranes. New York: Academic Press

    Google Scholar 

  19. Chang RLS, Deen WM, Robertson CR, Brenner BM (1975) Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int 8:212–218

    Google Scholar 

  20. Cohen S, Vernier RL, Michael AF (1983) The effect of charge on the renal distribution of ferritin. Am J Pathol 110:170–181

    Google Scholar 

  21. Courty PJ, Kanwar YS, Hynes RO, Farquhar MG (1980) Fibronectin localization in the rat glomerulus. J Cell Biol 87:691–696

    Google Scholar 

  22. Deen WM, Ueki JF, Brenner BM (1976) Permeability of renal peritubular capillaries to neutral dextran and endogeneous albumin. Am J Physiol 231:283–291

    Google Scholar 

  23. Farquhar MG, Wissig SL, Palade GE (1961) Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med 113:47–66

    Google Scholar 

  24. Farquhar MG, Palade GE (1962) Functional evidence for the existence of a third cell type in the renal glomerulus: Phagocytosis of filtration residues by a distinctive “third” cell. J Cell Biol 13:55–87

    Google Scholar 

  25. Farquhar MG (1975) The primary glomerular filtration barrier-basement membrane or epithelial slits? Kidney Int 8:197–211

    Google Scholar 

  26. Gauthier VJ, Mannik M, Striker GE (1982) Effect of cationized antibodies in preformed immune complexes on deposition and persistence in renal glomeruli. J Exp Med 156:766–777

    Google Scholar 

  27. Gauthier VJ, Striker GE, Mannik M (1984) Glomerular localization of preformed immune complexes prepared with anionic antibodies or with cationic antigens. Lab Invest 50:636–644

    Google Scholar 

  28. Graham RC, Karnovsky MJ (1966) Glomerular permeability. Ultrastructural cytochemical studies using peroxidase as protein tracers. J Exp Med 124:1123–1133

    Google Scholar 

  29. Graham RC, Kellermeyer RW (1968) Bovine lactoperoxidase as a cytochemical protein tracer for electron microscopy. J Histochem Cytochem 16:275–278

    Google Scholar 

  30. Haakenstad AD, Striker GE, Mannik M (1976) The glomerular deposition of soluble immune complexes prepared with reduced and alkylated antibodies and with intact antibodies in mice. Lab Invest 35:283–292

    Google Scholar 

  31. Hale CW (1946) Histochemical demonstration of acid polysaccharides in animal tissues. Nature 157:802

    Google Scholar 

  32. Houser MT, Scheinman JI, Basgen J, Steffes MW, Michael AF (1982) Preservation of mesangium and immunohistochemically defined antigens in glomerular basement membrane isolated by detergent extraction. J Clin Invest 69:1169–1175

    Google Scholar 

  33. Hunsicker LG, Shearer TP, Shaffer SJ (1981) Acute reversible proteinuria induced by infusion of the polycation hexadimethrine. Kidney Int 20:7–17

    Google Scholar 

  34. Jones DB (1969) Mucosubstances of the glomerulus. Lab Invest 21:119–125

    Google Scholar 

  35. Kanwar YS, Farquhar MG (1979) Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci USA 76:1303–1307

    Google Scholar 

  36. Kanwar YS, Farquahr MG (1979) Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol 81:137–153

    Google Scholar 

  37. Kanwar YS, Farquhar MG (1980) Detachment of endothelium and epithelium from the glomerular basement membrane produced by perfusion with neuraminidase. Lab Invest 42:375–384

    Google Scholar 

  38. Kanwar YS, Linker A, Farquhar MG (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol 86:688–693

    Google Scholar 

  39. Kanwar YS, Hascall VC, Farquhar MG (1981) Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J Cell Biol 90:527–532

    Google Scholar 

  40. Kanwar YS, Rosenzweig LJ (1982) Clogging of the glomerular basement membrane. J Cell Biol 93:489–494

    Google Scholar 

  41. Kanwar YS, Rosenzweig LJ (1982) Altered glomerular permeability as a result of focal detachment of the visceral epithelium. Kidney Int 21:565–574

    Google Scholar 

  42. Kanwar YS, Rosenzweig LJ, Jakubowski ML (1983) Distribution of de novo synthesized sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Lab Invest 49:216

    Google Scholar 

  43. Kanwar YS, Jakubowski ML (1983) Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Europ J Cell Biol 31:290–295

    Google Scholar 

  44. Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21

    Google Scholar 

  45. Kanwar YS, Rosenzweig LJ (1982) Altered glomerular permeability as a result of focal detachment of the visceral epithelium. Kidney Int 21:565–574

    Google Scholar 

  46. Karnowsky MJ, Ryan GB (1975) Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J Cell Biol 65:233–236

    Google Scholar 

  47. Karnovsky MJ (1979) The ultrastructure of glomerular filtration. Ann Rev Med 30:213–224

    Google Scholar 

  48. Kefalides NA (1971) Isolation of a collagen from basement membranes containing three identical α-chains. Biochem Biophys Res Commun 45:226–234

    Google Scholar 

  49. Kefalides NA (1973) Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res 6:63–104

    Google Scholar 

  50. Kelley VE, Cavallo T (1976) Ultrastructural study of the glomerular slit diaphragm in New Zealand black/white mice. Lab Invest 35:213–220

    Google Scholar 

  51. Kelley VE, Cavallo T (1977) Glomerular permeability. Ultrastructural studies in New Zealand black/white mice using polyanionic ferritin as a molecular probe. Lab Invest 37:265–275

    Google Scholar 

  52. Kelley VE, Cavallo T (1980) Glomerular permeability. Focal loss of anionic sites in glomeruli of proteinuric mice with lupus nephritis. Lab Invest 42:59–64

    Google Scholar 

  53. Kerjaschki D, Sharkey DJ, Farquhar MG (1984) Identification and characterization of podocalyxin — the major sialoprotein of the renal glomerular epithelial wall. J Cell Biol 98:1591–1596

    Google Scholar 

  54. Kurtz StM, Feldman JD (1962) Experimental studies on the formation of the glomerular basement membrane. J Ultrastruct Res 6:19–27

    Google Scholar 

  55. Langer KH, Paul N, Thoenes W (1973) Microinjection of tracer protein into the urinary space of the rat glomerulus in vivo. A new method for electron microscope study of the glomerular filtration apparatus. Cytobiol 7:268–271

    Google Scholar 

  56. Langer KH, Paul N, Thoenes W (1974) Demonstration of percellular channels in glomerular podocytes in aminonucleoside nephrosis. Virchows Arch B Cell Path 17:91–96

    Google Scholar 

  57. Langer KH (1975) Niereninterstitium — Feinstrukturen und Kapillarpermeabilität. III. Untersuchungen über die Verteilung von Tracerproteinen im peritubulären Interstitium und tubulärem Labyrinth. Cytobiologie 10:199–216

    Google Scholar 

  58. Langer KH (1980) Renal interstitum ultrastructure and capillary permeability. pp 431–442. In: Maunsbach AB, Olsen TS, Christensen EJ (eds) Functional ultrastructure of the kidney. Academic Press, London New York Toronto San Francisco

    Google Scholar 

  59. Latta H (1970) The glomerular capillary wall. J Ultrastruct Res 32:526–544

    Google Scholar 

  60. Latta H, Johnston WH, Stanley TM (1975) Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J Ultrastruct Res 51:354–376

    Google Scholar 

  61. Latta H, Johnston WH (1976) The glycoprotein inner layer of glomerular capillary basement membrane as a filtration barrier. J Ultrastruct Res 57:65–67

    Google Scholar 

  62. Laurie GW, Leblond CP, Martin GR (1982) Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membranes. J Cell Biol 95:304–344

    Google Scholar 

  63. Lawrence GM, Brewer DB (1982) Studies on the relationship between proteinuria and glomerular ultrastructural change in hyperalbuminaemic female wistar rats. J Pathol 138:365–383

    Google Scholar 

  64. Lee S, Vernier RL (1980) Immunoelectron microscopy of the glomerular mesangial uptake and transport of aggregated human albumin in the mouse. Lab Invest 42:44–58

    Google Scholar 

  65. Linker A, Hovingh P, Kanwar YS, Farquhar MG (1981) Characterization of heparan sulfate isolated from dog glomerular basement membranes. Lab Invest 44:560–565

    Google Scholar 

  66. Luft J (1964) Electron microscopy of cell extraneous coats as revealed by ruthenium red fixative and staining. J Cell Biol 23:54A-55A

    Google Scholar 

  67. Madri JA, Roll FJ, Furtmayr H, Foidart JM (1980) Ultrastructural localization of fibronectin and laminin in basement membranes of murine kidney. J Cell Biol 86:682–687

    Google Scholar 

  68. Mauer SM, Fish AJ, Blau EB, Michael AF (1972) The glomerular mesangium. I. Kinetic studies of macromolecular uptake in normal and nephrotic rats. J Clin Invest 51:1092–1101

    Google Scholar 

  69. Michael AF, Blau E, Vernier RL (1970) Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest 23:649–657

    Google Scholar 

  70. Michael AF, Keane WF, Raij L, Vernier RL, Mauer SM (1980) The glomerular mesangium. Kideny Int 17:141–154

    Google Scholar 

  71. Mohos SC, Skoza L (1969) Glomerular sialoproteins. Science 164:1519–1521

    Google Scholar 

  72. Mohos SC, Skoza L (1970) Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp Molec Path 12:316–323

    Google Scholar 

  73. Mynderse LA, Hasell JR, Kleinmann HK, Martin GR, Martinez-Hermandez A (1983) Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab Invest 48:292–302

    Google Scholar 

  74. Olson JL, Rennke HG, Venkatachalam MA (1981) Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab Invest 44:271–279

    Google Scholar 

  75. Pinto JA, Brewer DB (1974) Glomerular morphometry. I. Combined light and electron microscope studies in normal rats. Lab Invest 30:657–663

    Google Scholar 

  76. Reale E, Luciano L, Kühn K-W (1983) Ultrastructural architecture of proteoglycans in the glomerular basement membrane: A cytochemical approach. J Histochem Cytochem 31:662–668

    Google Scholar 

  77. Rennke HG, Cotran RS, Venkatachalam MA (1975) Role of molecular charge in glomerular permeability; tracer studies with cationized ferritins. J Cell Biol 67:638–646

    Google Scholar 

  78. Rennke HG, Venkatachalam MA (1977) Glomerular Permeability. In vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int 11:44–52

    Google Scholar 

  79. Rennke HG, Patel Y, Venkatachalam MA (1978) Effect of molecular charge on glomerular permeability to proteins in the rat. Clearance studies using neutral, anionic and cationic horseradish peroxidase. Kidney Int 13:278–288

    Google Scholar 

  80. Rennke HG, Patel Y, Venkatachalam MA (1978) Glomerular filtration of proteins: Clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int 13:324–328

    Google Scholar 

  81. Rennke HG, Venkatachalam MA, Patel Y (1979) Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J Clin Invest 63:713–717

    Google Scholar 

  82. Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60:423–433

    Google Scholar 

  83. Romen W, Schultze B, Hempel K (1976) Synthesis of the glomerular basement membrane in the rat kidney. Autoradiographic studies with the light and electron microscope. Virchows Arch (Cell Path) 20:125–137

    Google Scholar 

  84. Rothman AH (1969) Alcian blue as an electron stain. Exp Cell Res 58:177–179

    Google Scholar 

  85. Schneeberger EE (1974) Glomerular permeability to protein molecules — its possible structural basis. Nephron 13:7–21

    Google Scholar 

  86. Schneeberger EE, Levey R, McCluskey RT, Karnovsky MJ (1975) The isoporous substructure of the human glomerular slit diaphragm in man. Kidney Int 8:48–52

    Google Scholar 

  87. Schneeberger EE, Grupe WE (1976) The ultrastructure of the glomerular slit diaphragm in autologous immune complex nephritis. Lab Invest 34:298–305

    Google Scholar 

  88. Schneeberger EE, O'Brien A, Grupe WE (1979) Altered glomerular permeability in munich wistar rats with autologous immune complex nephritis. Lab Invest 40:227–235

    Google Scholar 

  89. Schreiner GF, Cotran RS (1982) Localization of an Iabearing glomerular cell in the mesangium. J Cell Biol 94:483–488

    Google Scholar 

  90. Schreiner GF, Unanue ER (1984) Origin of the rat mesangial phagocyte and its expression of the leukocyte common antigen. Lab Invest 51:515–523

    Google Scholar 

  91. Shea SM, Morrison AB (1975) A stereological study of the glomerular filter in the rat. J Cell Biol 67:436–443

    Google Scholar 

  92. Seiler MW, Venkatachalam MA, Cotran RS (1975) Glomerular epithelium: Structural alterations induced by polycations. Science 189:390–393

    Google Scholar 

  93. Seiler MW, Rennke HG, Venkatachalam MA, Cotran RS (1977) Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab Invest 36:48–61

    Google Scholar 

  94. Seiler MW, Hoyer JR, Krueger TE (1980) Altered localization of protamine-heparin complexes in aminonucleoside nephrosis. Lab Invest 43:9–17

    Google Scholar 

  95. Simionescu N, Simionescu M, Palade GE (1981) Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 90:605–613

    Google Scholar 

  96. Simionescu M, Simionescu N, Palade GE (1982) Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol 95:425–434

    Google Scholar 

  97. Simionescu N, Lapu F, Simionescu M (1983) Rings of membrane sterols surround the openings of vesicles and fenestrae in capillary endothelium. J Cell Biol 97:1592–1600

    Google Scholar 

  98. Spiro RG (1972) Basement membranes and collagens. Glycoproteins 5, Ed. 2 part B, 964–999

  99. Spiro RG (1967) Studies on the renal glomerular basement membrane. J Biol Chem 242:1915–1922

    Google Scholar 

  100. Sterzel RB, Perefetto M, Biemesderfer D, Kashgarian M (1983) Disposal of ferritin in the glomerular mesangium of rats. Kidney Int 23:480–488

    Google Scholar 

  101. Tice LW (1962) Alcian blue staining for electron microscopy. J Histochem Cytochem 10:688–689

    Google Scholar 

  102. Thoenes W (1967) Endoplasmatisches Retikulum und „Sekretkörper“ im Glomerulumepithel der Säugerniere. Ein morphologischer Beitrag zum Problem der Basalmembranbildung. Z Zellforsch 78:561–582

    Google Scholar 

  103. Thoenes W (1971) Renale Behandlung der Proteine in morphologischer Sicht. 123–137. In: Fortschritte der Nephrologie (A. Bohle und G.E. Schubert, eds.). Stuttgart — New York: Schattauer

    Google Scholar 

  104. Vehaskari VM, Root ER, Germuth FG, Robson AM (1982) Glomerular charge and urinary protein excretion: Effects of systemic and intrarenal polycation infusion in the rat. Kidney Int 22:127–135

    Google Scholar 

  105. Venkatachalam MA, Cotran RS, Karnovsky MJ (1970) An ultrastructural study of glomerular permeability in aminonucleoside nephrosis using catalase as a tracer protein. J Exp Med 132:1168–1180

    Google Scholar 

  106. Venkatachalam MA, Karnovsky MJ, Fahimi HD, Cotran RS (1970) An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J Exp Med 132:1153–1167

    Google Scholar 

  107. Vernier RL, Papermaster BW, Good RA (1959) Aminonucleoside nephrosis. I. Electron microscopic study of the renal lesion in rats. J Exp Med 109:115–135

    Google Scholar 

  108. Vernier RJ, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM (1983) Heparan sulfate-rich anionic sites in the human glomerular basement membrane. Decreased concentration in congenital nephrotic syndrome. New Engl J Med 309:1001–1009

    Google Scholar 

  109. Yamada E (1955) The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol 1:551–566

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. Eberhard von Wasielewski, Hoechst AG/Universität Mainz, zum 65. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, K.H. Biophysikochemische Strukturen des glomerulären Filters. Klin Wochenschr 63, 835–849 (1985). https://doi.org/10.1007/BF01738136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738136

Key words

Schlüsselwörter

Navigation