Journal of Muscle Research & Cell Motility

, Volume 13, Issue 5, pp 511–515 | Cite as

S-100ab increases Ca2+ release in purified sarcoplasmic reticulum vesicles of frog skeletal muscle

  • V. Marsili
  • L. Mancinelli
  • G. Menchetti
  • S. Fulle
  • F. Baldoni
  • G. Fano'
Papers

Summary

The S-100ab protein, a mixed isoform member of the S-100 family, stimulates Ca2+-induced Ca2+-release from sarcoplasmic reticulum vesicles purified from frog skeletal muscle cells. The effects of S-100ab appear to be specific and result from its peculiar characteristics rather than the fact that it is a calcium-binding protein. Moreover, the addition of S-100ab to the solution completely abolished the inhibition provoked when Ruthenium Red was added alone. Experiments that added labelled Ryanodine with and without S-100 indicated that the protein diminished the affinity of the alkaloid at its receptor site.

Keywords

Skeletal Muscle Muscle Cell Alkaloid Ruthenium Sarcoplasmic Reticulum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, W. S. (1987) Dual roles for DHP receptors in excitation-contraction coupling.Nature 328, 297.PubMedGoogle Scholar
  2. Calissano, P., Mercanti, D. &Levi, A. (1976) Ca2+, K+-regulated intracellular crosslinking of S100 protein via disulphide bond formation.Eur. J. Biochem. 71, 45–52.PubMedGoogle Scholar
  3. Endo, M. (1977) Calcium release from the sarcoplasmic reticulum.Physiol. Rev. 57, 71–108.PubMedGoogle Scholar
  4. Fano', G., Belia, S., Fulle, S., Angelella, P., Marsili, V. &Panara, F. (1989) Functional aspects of calcium transport in sarcoplasmic reticulum vesicles derived from frog skeletal muscle treated with saponin.J. Muscle Res. Cell Motil. 10, 326–30.PubMedGoogle Scholar
  5. Fano', G., Angelella, P., Mariggio', D., Aisa, M. C., Giambanco, I. &Donato, R. (1989) S-100ao protein stimulates the basal (Mg2+-activated) adenylate cyclase activity associated with skeletal muscle membranes.FEBS Lett. 248, 9–12.PubMedGoogle Scholar
  6. Fano', G., Marsili, V., Angelella, P., Aisa, M. C., Giambanco, I. &Donato, R. (1990) S-100ao stimulates Ca2+-induced Ca2+ release from isolated sarcoplasmic vesicles.FEBS Lett. 255, 381–4.Google Scholar
  7. Fill, M. &Coronado, R. (1988) Ryanodine receptor channel of sarcoplasmic reticulum.TINS 11, 453–7.PubMedGoogle Scholar
  8. Franzini-Armstrong, C. (1970) Studies of the triad I: structure of the junction in frog twitch fibers.J. Cell Biol. 47, 488–99.Google Scholar
  9. Gomperts, B. D. (1983) Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors.Nature 306, 64–7.PubMedGoogle Scholar
  10. Haimoto, H. &Kato, K. (1987) S-100ao protein, a calcium binding protein, is localized in the slow-twitch muscle fibre.J. Neurochem. 48, 917–23.PubMedGoogle Scholar
  11. Imagawa, T., Knudson, C. M., Leung, A. T., Kahl, S. D. &Campbell, K. P. (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ permeable pore of the calcium release channel.J. Biol. Chem. 262, 16636–43.PubMedGoogle Scholar
  12. Jorgensen, A. O., CyShen, A., Arnold, W., Leung, A. T. &Campbell, K. T. (1989) Subcellular distribution of the 1,4 DHP receptor in rabbit musclein situ: an immunofluores-cence and immunocolloidal gold-labelling study.J. Cell Biol. 109, 135–47.PubMedGoogle Scholar
  13. Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R. &Gilman, A. G. (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure.Science 244, 1558–64.PubMedGoogle Scholar
  14. Lai, F. A., Erickson, H., Block, B. A. &Meissner, G. (1987) Evidence for a junctional feet ryanodine receptor complex from sarcoplasmic reticulum.Biochem. Biophys. Res. Commun. 143, 704–9.PubMedGoogle Scholar
  15. Ma, J. &Coronado, R. (1988) Heterogeneity of conductance states in calcium channel of skeletal muscle.Biophys. J. 53, 387–95.PubMedGoogle Scholar
  16. Meissner G., Darling, E. &Eveleth, J. (1986) Kinetics of rapid Ca2+ release by SR. Effect of Ca2+, Mg2+ and adenine nucleotide.Biochemistry 25, 236–44.PubMedGoogle Scholar
  17. Moore, B. W. (1965) A soluble protein characteristic of the nervous system.Biochem. Biophys. Res. Commun. 19, 739–44.PubMedGoogle Scholar
  18. Rios, E. &Brum, G. (1987) Involvement of DHP receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.PubMedGoogle Scholar
  19. Saito, A., Seiler, S., Chu, A. &Fleisher, S. (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.J. Cell Biol. 99, 875–85.PubMedGoogle Scholar
  20. Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Veda, M., Kanaska, M., Hirose, T. &Numa, S. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.Nature 339, 439–45.PubMedGoogle Scholar
  21. Valdivia, H. H. &Coronado, R. (1989) Inhibition of dihydro-pyridine-sensitive calcium channel by the plant alkaloid ryanodine.FEBS Lett. 244, 333–7.PubMedGoogle Scholar
  22. Volpe, P., Salviati, G., Di Virgilio, F. &Pozzan, T. (1985) Inositol 1,4,5-triphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle.Nature 316, 347–9.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • V. Marsili
    • 1
  • L. Mancinelli
    • 1
  • G. Menchetti
    • 1
  • S. Fulle
    • 1
  • F. Baldoni
    • 1
  • G. Fano'
    • 1
  1. 1.Istituto di Biologia CellulareUniversita' degli Studi di PerugiaPerugiaItaly

Personalised recommendations