Journal of Muscle Research & Cell Motility

, Volume 13, Issue 5, pp 497–510 | Cite as

Giant sarcoplasmic reticulum vesicles: A study of membrane morphogenesis

  • Sandor Varga
  • Anthony Martonosi


Rabbit sarcoplasmic reticulum vesicles were fused into giant proteoliposomes in a medium of 0.1 M KCl, 10mm Tris-maleate, pH 7.0, 10 Μg ml−1 antipain, 10 Μg ml−1 leupeptin, 25 IU per ml Trasylol, 3mm NaN3, 3.75% PEG 1500 and 3% DMSO by brief exposure to 37‡ C, followed by incubation for 4 h at 25‡ C. Approximately 5–10% of the sarcoplasmic reticulum elements underwent fusion, forming single-walled spherical vesicles of 1–25 Μm diameter, in which the polarity of the native membrane was preserved. The Ca2+-stimulated ATPase activity remained essentially unchanged after fusion. On exposure to decavanadate in a Ca2+-free medium the spherical vesicles assumed a corrugated appearance with the formation of long ridges separated by deep furrows that eventually pinched off longitudinally and separated into numerous long crystalline tubules of uniform (approximately 0.1 Μm) diameter. The vanadate-induced transformation of giant vesicles into tubules implies that the geometry of the sarcoplasmic reticulum membrane is determined by the conformation of the Ca2+-ATPase.


ATPase Activity Sarcoplasmic Reticulum Free Medium Native Membrane Trasylol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, C. C., Mulligan, I. P. &Lea, T. J. (1991) Ca2+ and activation mechanism in skeletal muscle.Quart. Rev. Biophys. 24, 1–73.Google Scholar
  2. Bick, R. J., Youker, K. A., Pownall, H. J., Van Winkle, W. B. &Entman, M. L. (1991) Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein.Arch. Biochem. Biophys. 286, 346–52.PubMedGoogle Scholar
  3. Boland, R., Martonosi, A. &Tillack, T. W. (1974) Developmental changes in the composition and function of sarcoplasmic reticulum.J. Biol. Chem. 249, 612–23.PubMedGoogle Scholar
  4. Castellani, L. &Hardwicke, P. M. D. (1983) Crystalline structure of sarcoplasmic reticulum from scallop.J. Cell Biol. 97, 557–61.PubMedGoogle Scholar
  5. Castellani, L., Hardwicke, P. M. D. &Vibert, P. (1985) Dimer ribbons in the three dimensional structure of sarcoplasmic reticulum.J. Mol. Biol. 185, 579–94.PubMedGoogle Scholar
  6. Clarke, D. M., Loo, T. W. &Maclennan, D. H. (1990) The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca2+-ATPase of sarcoplasmic reticulum.J. Biol. Chem. 265, 17405–8.PubMedGoogle Scholar
  7. Correa, A. M. &Agnew, W. S. (1988) Fusion of native or reconstituted membranes to liposomes, optimized for single channel recording.Biophys. J. 54, 569–75.PubMedGoogle Scholar
  8. Criado, M. &Keller, B. U. (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes.FEBS Lett. 224, 172–6.PubMedGoogle Scholar
  9. Crowe, L. M. &Baskin, R. J. (1977) Stereological analysis of developing sarcotubular membranes.J. Ultrast. Res. 58, 10–21.Google Scholar
  10. Dux, L. &Martonosi, A. (1983a) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate.J. Biol. Chem. 258, 2599–603.PubMedGoogle Scholar
  11. Dux, L. &Martonosi, A. (1983b) Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion.J. Biol. Chem. 258, 10111–5.PubMedGoogle Scholar
  12. Dux, L. &Martonosi, A. (1983c) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. I. The effects of Ca2+, ATP and inorganic phosphate.J. Biol. Chem. 258, 11896–902.PubMedGoogle Scholar
  13. Dux, L. &Martonosi, A. (1983d) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. II. The influence of membrane potential.J. Biol. Chem. 258, 11903–7.PubMedGoogle Scholar
  14. Dux, L., Taylor, K. A., Ting-Beall, H. P. &Martonosi, A. (1985) Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions.J. Biol. Chem. 260, 11730–43.PubMedGoogle Scholar
  15. Hirashima, N. &Kirino, Y. (1988) Potassium channels in synaptosomal membrane examined using patch-clamp techniques and reconstituted giant proteolippsomes.Biochim. Biophys. Acta 946, 209–14.PubMedGoogle Scholar
  16. Hirashima, N., Ishibashi, H. &Kirino, Y. (1991) Comparative electrophysiological study of reconstituted giant vesicle preparations of the rabbit skeletal muscle sarcoplasmic reticulum K+ channel.Biochim. Biophys. Acta 1067, 235–40.PubMedGoogle Scholar
  17. Keller, B. U., Hedrich, R., Vaz, W. L. C. &Criado, M. (1988) Single channel recordings of reconstituted ion channel proteins: an improved technique.Pflugers Arch. 411, 94–100.PubMedGoogle Scholar
  18. Martonosi, A., Boland, R. &Halpin, R. A. (1972) The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport.Cold Spring Harbor Symp. Quant. Biol. 37, 455–68.Google Scholar
  19. Martonosi, A., Roufa, D., Ha, D.-B. &Boland, R. (1980) The biosynthesis of sarcoplasmic reticulum.Fed. Proc. 39, 2415–21.PubMedGoogle Scholar
  20. Martonosi, A., Dux, L., Terjung, R. L. &Roufa, D. (1982) Regulation of membrane assembly during development of sarcoplasmic reticulum. The possible role of calcium.Ann. N.Y. Acad. Sci. 402, 485–514.PubMedGoogle Scholar
  21. Martonosi, A., Taylor, K. A., Varga, S. &Ting-Beall, H. P. (1987) The molecular structure of sarcoplasmic reticulum. InThe Electron Microscopy of Proteins, Vol. 6, Membranous Structures (edited byHarris, J. R. &Horne, R. W.) pp. 255–376. London: Academic Press.Google Scholar
  22. Matthews, I., Sharma, R. P., Lee, A. G. &East, J. M. (1990) Transmembrane organization of (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum. Evidence for lumenal location of residues 877–888.J. Biol. Chem. 265, 18737–40.PubMedGoogle Scholar
  23. Molnar, E., Varga, S., Jona, I. &Martonosi, A. (1991) Covalent labelling of the cytoplasmic or luminal domains of the sarcoplasmic reticulum Ca2+-ATPase with fluorescent azido dyes.Biochim. Biophys. Acta 1068, 27–40.PubMedGoogle Scholar
  24. Nakamura, H., Jilka, R. L., Boland, R. &Martonosi, A. N. (1976) Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.J. Biol. Chem. 251, 5414–23.PubMedGoogle Scholar
  25. Peachey, L. D. &Franzini-Armstrong, C. (1983) Structure and function of membrane systems of skeletal muscle cells. InHandbook of Physiology. Section 10,Skeletal Muscle (edited byPeachey, L. D., Adrian, R. H. &Geiger, S. R.) pp. 23–71. Bethesda: American Physiological Society.Google Scholar
  26. Rahamimoff, R., Deriemer, S. A., Sakmann, B., Stadler, H. &Yakir, N. (1988) Ion channels in synaptic vesicles fromTorpedo electric organ.Proc. Natl Acad. Sci. USA 85, 5310–4.PubMedGoogle Scholar
  27. Raudino, A. &Bianciardi, P. (1991) Polymer-mediated electrostatic interactions between charged lipid assemblies and electrolyte solutions: a tentative model of the polyethylene glycol-induced cell fusion.J. Theor. Biol. 149, 1–20.PubMedGoogle Scholar
  28. Rios, E. &Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle.Physiol. Rev. 71, 849–908.PubMedGoogle Scholar
  29. Riquelme, G., Lopez, E., Garcia-Segura, L. M., Ferragut, J. A. &Gonzalez-Ros, J. M. (1990) Giant liposomes: a model system in which to obtain patch-clamp recordings of ionic channels.Biochemistry 29, 11215–22.PubMedGoogle Scholar
  30. Rosenberg, R. L., Tomiko, S. A. &Agnew, W. S. (1984) Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax ofElectrophorus electricus.Proc. Natl Acad. Sci. USA 81, 5594–8.PubMedGoogle Scholar
  31. Saito, Y., Hirashima, N. &Kirino, Y. (1988) Giant proteoliposomes prepared by freeze-thawing without use of detergent: reconstitution of biomembranes usually inaccessible to patch-clamp pipette microelectrode.Biochem. Biophys. Res. Commun. 154, 85–90.PubMedGoogle Scholar
  32. Schmid, A., Gogelein, H., Kemmer, T. P. &Schulz, I. (1988) Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas.J. Membr. Biol. 104, 275–82.PubMedGoogle Scholar
  33. Stein, P. &Palade, P. (1988) Sarcoballs: direct access to sarco-plasmic reticulum Ca2+ channels in skinned frog muscle fibres.Biophys. J. 54, 357–63.PubMedGoogle Scholar
  34. Tank, D. W., Miller, C. &Webb, W. W. (1982) Isolated-patch recording from liposomes containing functionally reconstituted chloride channels fromTorpedo electroplax.Proc. Natl Acad. Sci. USA 79, 7749–53.PubMedGoogle Scholar
  35. Tank, D. W., Huganir, R. L., Greengard, P. &Webb, W. W. (1983) Patch-recorded single-channel currents of the purified and reconstitutedTorpedo acetylcholine receptor.Proc. Natl Acad. Sci. USA 80, 5129–33.PubMedGoogle Scholar
  36. Taylor, K., Dux, L. &Martonosi, A. (1984) Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase.J. Mol. Biol. 174, 193–204.PubMedGoogle Scholar
  37. Taylor, K. A., Dux, L. &Martonosi, A. (1986a) Three-dimensional reconstruction of negatively-stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum.J. Mol Biol. 187, 417–27.PubMedGoogle Scholar
  38. Taylor, K. A., Ho, M-H. &Martonosi, A. (1986b) Image analysis of Ca2+-ATPase from sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 483, 31–43.PubMedGoogle Scholar
  39. Tillack, T. W., Boland, R. &Martonosi, A. N. (1974) The ultrastructure of developing sarcoplasmic reticulum.J. Biol. Chem. 249, 624–33.PubMedGoogle Scholar
  40. Varga, S., Csermely, P. &Martonosi, A. (1985) The binding of vanadium (V) oligoanions to sarcoplasmic reticulum.Eur. J. Biochem. 148, 119–26.PubMedGoogle Scholar
  41. Varga, S., Mullner, N., Pikula, S., Papp, S., Varga, K. &Martonosi, A. (1986) Pressure effects on sarcoplasmic reticulum.J. Biol. Chem. 261, 13943–56.PubMedGoogle Scholar
  42. Varga, S., Csermely, P., Mullner, N., Dux, L. &Martonosi, A. (1987) Effect of chemical modification on the crystallization of Ca2+-ATPase in sarcoplasmic reticulum.Biochim. Biophys. Acta 896, 187–95.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Sandor Varga
    • 1
  • Anthony Martonosi
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyState University of New York, Health Science CenterSyracuseUSA

Personalised recommendations