Skip to main content

Advertisement

Log in

Desoxyribonucleinsäure-Polymerase in menschlichen Leukocyten

Enzymaktivität bei Leukämien und Virusinfektionen

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Der enzymatische Einbau von Desoxyribonucleotiden in DNS durch den partikelfreien Überstand des Cytolysats von peripheren menschlichen Leukocyten wurde bei Leukämien und Virusinfektionen untersucht.

Die optimalen Reaktionsbedingungen entsprechen denen der DNS-Polymerasen aus anderen stark proliferierenden Säugetiergeweben.

Die noch nachweisbare geringe Enzymaktivität in peripheren Leukocyten von gesunden Spendern ist auf die potentiell zur DNS-Synthese befähigten rundkernigen Zellen zurückzuführen. Bei chronischen Myelosen mit Ausschwemmung unreifer Zellelemente finden sich sehr hohe Aktivitäten der DNS-Polymerase. Dagegen liegen die Werte bei akuten Leukosen, trotz des hohen Anteils unreifer Zellen, deutlich niedriger. Das Mißverhältnis zwischen der Unreife der Zellen und der Aktivität der DNS-Polymerase bei akuten und chronischen Myelosen steht in guter Übereinstimmung mit Untersuchungen zur Proliferationsaktivität leukämischer Zellen. Die gefundenen niedrigen Einbauraten bei chronischen Lymphadenosen entsprechen ebenfalls gut der niedrigen Mitoseaktivität der Lymphocyten bei dieser Erkrankung.

Die Polymeraseaktivität der Leukocyten und die Proliferationsaktivität des malignen Prozesses gehen einander parallel. Dadurch sind prognostische Schlüsse auf den Verlauf des Krankheitsbildes möglich.

Bei akuten Virusinfektionen steigt die Enzymaktivität stark an. Dies entspricht der spezifischen Induktion der DNS-Polymerase nach Phageninfektionen bei Bakterien oder nach Virusinfektionen in Gewebekulturen.

Summary

The enzymatic incorporation of deoxyribonucleotides into DNA by particle-free extracts from peripheral human leukocytes has been investigated in leukemias and virus infections.

The reaction characteristics are similar of those of the DNA polymerases derived from other rapidly proliferating mammalian tissues.

The slight but still demonstrable enzyme activity in peripheral leukocytes from healthy donors has to be ascribed to the mononuclear cells. In chronic granulocytic leukemias with immature cells in the peripheral blood high activities of the DNA polymerase are found. On the other hand the values in acute leukemias are markedly lower in spite of the high proportion of immature cells. The discrepancy between the immaturity of the cells and the activity of the DNA polymerase in acute and chronic granulocytic leukemias is in good agreement with the results of investigations of the proliferative activity of leukemic cells. The low rates of incorporation in chronic lymphocytic leukemias likewise correspond to the low mitotic activity of the leukemic lymphocytes.

The activity of the DNA polymerase in leukocytes and the activity of the malignant process parallel each other, thus permitting a prognosis on the course of the disease to be made.

In acute viral infections the enzyme activity is high. This corresponds to the specific induction of the DNA polymerase in bacteria after phage infection or in tissue cultures after viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ATP:

Adenosintriphosphat

dATP:

Desoxyadenosin-5′-triphosphat

dAMP:

Desoxyadenosin-5′-monophosphat

dCTP:

Desoxycytidin-5′-triphosphat

dGTP:

Desoxyguanosin-5′-triphosphat

DNase:

Desoxyribonuclease

DNS:

Desoxyribonucleinsäure

EDTA:

Äthylendiamintetraessigsäure

PP:

Pyrophosphat

TTP:

Thymidin-5′-triphosphat

TRIS:

Tris(hydroxymethyl)aminomethan

Literatur

  1. Aposhian, H. V., andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: A new enzyme. J. biol. Chem.237, 519 (1962).

    Google Scholar 

  2. Astaldi, G., R. Airo, andS. Sauli: In vitro studies on leukaemic cells. In: Current research in leukaemia (ed.F. G. Hayhoe). Cambridge 1965.

  3. Bessmann, M. J., I. R. Lehmann, E. S. Simms, andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. biol. Chem.233, 171 (1958).

    Google Scholar 

  4. Bianchi, P. A.: Thymidine phosphorylation and deoxyribonucleic acid synthesis in human leukaemic cells. Biochim. biophys. Acta (Amst.)55, 547 (1962).

    Google Scholar 

  5. Boll, I.: Granulocytopoese unter physiologischen und pathologischen Bedingungen. In: Experimentelle Medizin, Pathologie und Klinik, Bd. 7. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  6. Bollum, F. J.: Thermal conversion of nonpriming deoxyribonucleic acid to primer. J. biol. Chem.234, 2733 (1959).

    Google Scholar 

  7. Bollum, F. J.: Calf thymus polymerase. J. biol. Chem.235, 2399 (1960).

    Google Scholar 

  8. Bollum, F. J.: Filter paper disk techniques for assaying radioactive macromolecules. In: Procedures in nucleic acid research (ed.G. L. Cantoni, andD. R. Davies). New York: Harper & Row 1966.

    Google Scholar 

  9. Bollum, F. J., E. Groeninger, andM. Yoneda: Polydeoxyadenylic acid. Proc. nat. Acad. Sci. (Wash.)51, 853 (1964).

    Google Scholar 

  10. Bollum, F. J., andV. R. Potter: Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J. biol. Chem.233, 478 (1958).

    Google Scholar 

  11. Bond, V. P., E.P. Cronkite, T. M. Fliedner, andP. Schork: Deoxyribonucleic acid synthesizing cells in peripheral blood of normal human beings. Science128, 202 (1958).

    Google Scholar 

  12. Calvin, H. I., B. Kosto, andH. G. Williams-Ashman: Enzymic incorporation of deoxyribonucleotides into deoxyribonucleic acid by mammalian testis. Arch. Biochem.118, 670 (1967).

    Google Scholar 

  13. Cooper, E. H., P. Barkhan, andA. J. Hale: Observation on the proliferation of human lymphocytes cultured with phytohemagglutinin. Brit. J. Haemat.9, 101 (1963).

    Google Scholar 

  14. Dische, Z.: Color reactions of nucleic acid components. In: The nucleic acids. Chemistry and biology (ed.E. Chargaff, andJ. N. Davidson), vol. 1, p. 285. New York: Academic Press 1955.

    Google Scholar 

  15. Fischer, R., u.A. Gropp: Cytochemie des Lymphocyten in vitro. Klin. Wschr.44, 733 (1966).

    Google Scholar 

  16. Furlong, N. B.: Deoxyribonucleic acid polymerase from Walker256 carcinosarcoma. Biochim. biophys. Acta (Amst.)108, 489 (1965).

    Google Scholar 

  17. Furlong, N. B.: Effects of oligonucleotides on the Walker 256 carcinosarcoma DNA polymerase reaction. Biochim. biophys. Acta (Amst.)114, 491 (1966).

    Google Scholar 

  18. Gottesman, M. E., andE. S. Canellakis: The terminal nucleotidyltransferase of calf thymus nuclei. J. biol. Chem.241, 4339 (1966).

    Google Scholar 

  19. Gropp, A., u.R. Fischer: Ergebnisse der Züchtung von Lymphocyten in vitro. Klin. Wschr.44, 665 (1966).

    Google Scholar 

  20. Harford, C. G., andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid in extracts of mammalian cells. Fed. Proc.17, 515 (1958).

    Google Scholar 

  21. Hartwell, L. H., M. Vogt, andR. Dulbecco: Induction of cellular DNA synthesis by polyoma virus. II. Increase in the rate of enzyme synthesis after infection with polyoma virus in mouse kidney cells. Virology27, 262 (1965).

    Google Scholar 

  22. Josse, J., A. D. Kaiser, andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. biol. Chem.236, 864 (1961).

    Google Scholar 

  23. Kara, J., andR. Weil: Specific activation of the DNA-synthesizing apparatus in contact-inhibited mouse kidney cells by polyoma virus. Proc. nat. Acad. Sci. (Wash.)57, 63 (1966).

    Google Scholar 

  24. Keir, H. M.: DNA polymerases from mammalian cells. In: Progress in nucleic acid research and molecular biology (ed.J. N. Davidson, andW. E. Cohn), vol. 4, p. 81. New York and London: Academic Press 1965.

    Google Scholar 

  25. Keir, H. M., B. Binnie, andR. M. S. Smellie: Factor affecting the primer for deoxyribonucleic acid polymerase. Biochem. J.82, 493 (1962).

    Google Scholar 

  26. Keir, H. M., J. Hay, J. M. Morrison, andH. Subak-Sharpe: Altered properties of deoxyribonucleic acid nucleotidyltransferase after infection of mammalian cells with Herpes simplex virus. Nature (Lond.)210, 369 (1966).

    Google Scholar 

  27. Kit, S., L. J. Piekarski, D. R. Dubbs, R. A. de Torres, andM. Anken: Enzyme induction in Green Monkey kidney cultures infected with simian adenovirus. J. Virol.1, 10 (1967).

    Google Scholar 

  28. Kornberg, A.: In: The chemical basis of heredity (ed.McElroy andB. Glass), p. 579. Baltimore: John Hopkins 1957.

    Google Scholar 

  29. Kornberg, A.: Biosynthesis of DNA. In: Regulation of nucleic acid and protein biosynthesis (ed.V. V. Koningsberger, andL. Bosch). Amsterdam: Elsevier 1967.

    Google Scholar 

  30. Krakow, J. S., C. Coutsogeorgopoulos, andE. S. Canellakis: Studies on the incorporation of deoxyribonucleotides and ribonucleotides into deoxyribonucleic acid. Biochim. biophys. Acta (Amst.)55, 639 (1962).

    Google Scholar 

  31. Lehmann, J. R., M. J. Bessmann, E. S. Simms, andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from E. coli. J. biol. Chem.233, 163 (1958).

    Google Scholar 

  32. Loeb, L. A., D. Mazia, andA. D. Ruby: Priming of DNA polymerase in nuclei of sea urchin embryos by native DNA. Proc. nat. Acad. Sci. (Wash.)57, 841 (1967).

    Google Scholar 

  33. Lowry, O. H., N. J. Roseborough, A. L. Farr, andR. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265 (1951).

    Google Scholar 

  34. Magee, W. E., andO. V. Miller: Immunological evidence for the appearance of a new DNA-polymerase in cells infected with vaccinia virus. Virology31, 64 (1967).

    Google Scholar 

  35. Mantsavinos, R.: Studies on the synthesis of deoxyribonucleic acid. I. Incorporation of deoxyribonucleoside-5′-triphosphates into deoxyribonucleic acid by a partially purified enzyme from regenerating rat liver. J. biol. Chem.239, 3431 (1964).

    Google Scholar 

  36. Mantsavinos, R., andE. S. Canellakis: Studies on the biosynthesis of deoxyribonucleic acid by soluble mammalian enzymes. J. biol. Chem.234, 628 (1959).

    Google Scholar 

  37. Mantsavinos, R., andE. S. Canellakis: Studies on the biosynthesis of DNA by cell-free extracts of mouse leukemic cells. Cancer Res.19, 1239 (1959).

    Google Scholar 

  38. Mantsavinos, R., andB. Munson: Studies on the synthesis of deoxyribonucleic acid by mammalian enzymes. J. biol. Chem.241, 2840 (1966).

    Google Scholar 

  39. Nowell, P. C.: Phytohemagglutinin: An initiator of mitosis in cultures of normal human leukocytes. Cancer Res.20, 462 (1960).

    Google Scholar 

  40. Rabinowitz, Y.: DNA polymerase and carbohydrate metabolizing enzyme content of normal and leukemic glass column separated leukocytes. Blood27, 470 (1966).

    Google Scholar 

  41. Richardson, C. C., C. L. Schildkraut, andA. Kornberg: Studies on the replication of DNA by DNA-polymerases. Cold Spr. Harb. Symp. quant. Biol.28, 9 (1963).

    Google Scholar 

  42. Richardson, C. C., R. B. Inman, andA. Kornberg: Enzymic synthesis of deoxyribonucleic acid. XVIII. The repair of partially single-stranded DNA-templates by DNA polymerase. J. molec. Biol.9, 46 (1964).

    Google Scholar 

  43. Richardson, C. C., C. L. Schildkraut, H. V. Aposhian, andA. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. XIV. Further purification and properties of deoxyribonucleic acid polymerase of Escherichia coli. J. biol. Chem.239, 222 (1964).

    Google Scholar 

  44. Sasaki, M. S., andA. Norman: Proliferation of human lymphocytes in culture. Nature (Lond.)210, 913 (1966).

    Google Scholar 

  45. Schildkraut, D. L., C. C. Richardson, andA. Kornberg: Enzymic synthesis of deoxyribonucleic acid. XVII. Some unusual physical properties of the product primed by native DNA templates. J. molec. Biol.9, 24 (1964).

    Google Scholar 

  46. Smellie, R. M., H. M. Keir, andJ. N. Davidson: Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. I. Incorporation of3H-thymidine. Biochim. biophys. Acta (Amst.)35, 389 (1959).

    Google Scholar 

  47. Watson, D., andF. H. Crick: The structure of DNA. Cold Spr. Harb. Symp. quant. Biol.18, 123 Q (1953).

    Google Scholar 

  48. Wilmanns, W.: Die Thymidin-Kinase in normalen und leukämischen myeloischen Zellen. Klin. Wschr.45, 505 (1967).

    Google Scholar 

  49. Woodliff, H. J.: Blood and bone marrow cell culture. London: Eyre & Spottiswoode 1964.

    Google Scholar 

  50. Yoneda, M., andF. J. Bollum: Deoxynucleotide-polymerizing enzymes of calf thymus gland. I. Large scale purification of terminal and replicative deoxyribonucleotidyl transferases. J. biol. Chem.240, 3385 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Für die Überlassung von Untersuchungsmaterial danken wir der Medizinischen Klinik der Städtischen Krankenanstalten Köln-Merheim (Direktor: Prof. Dr.Buchborn), der Medizinischen Universitätsklinik Köln (Direktor: Prof. Dr.Gross), dem Städtischen Kinderkrankenhaus Köln-Riehl (Direktor: Prof. Dr.Ewerbeck), der Blutspendenzentrale an der Chirurgischen Universitätsklinik Köln (Leiter: OMR Dr.Bube) und dem Institut für gerichtliche Medizin (Direktor: Prof. Dr.Dotzauer).

Die Arbeit wurde ermöglicht durch ein Forschungsstipendium (K. W.) und eine Sachbeihilfe der Deutschen Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilms, K., Jaenicke, L. Desoxyribonucleinsäure-Polymerase in menschlichen Leukocyten. Klin Wochenschr 46, 407–413 (1968). https://doi.org/10.1007/BF01736929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01736929

Navigation