Klinische Wochenschrift

, Volume 64, Issue 23, pp 1224–1228 | Cite as

Tyrosine loading in patients with hepatic cirrhosis: Lack of effect on plasma catecholamines

  • H. Wernze
  • K. L. Diehl
  • P. Hermann
  • G. Peter
Originalien

Summary

Plasma norepinephrine concentrations are often elevated in patients with hepatic cirrhosis in relation to the stage of disease and possibly in response to a decrease in “effective” arterial blood volume. Since tyrosine, the precursor for catecholamines, is said to influence the rate of catecholamine biosynthesis within the central nervous system and peripheral sympathetic structures, we tested whether basal hypertyrosinemia and increased plasma tyrosine levels after oral loading with l-tyrosine are associated with elevated plasma catecholamine concentrations. Baseline norepinephrine (NE) and epinephrine (E) were significantly higher in 17 patients with decompensated cirrhosis, as compared with 11 healthy controls (NE: 809±108 pg/ml vs 295±16 pg/ml; E: 69±9 pg/ml vs 36±8 pg/ml). No significant correlation between the basal plasma tyrosine and norepinephrine level could be demonstrated in patients with cirrhosis (r=0.04). Oral tyrosine loading (100 mg/kg b.w.) administered in six equal doses did not change the level of catecholamines, whereas plasma tyrosine increased two- to three-fold. Even a large single dose (14 g l-tyrosine) failed to alter plasma catecholamines in six cirrhotic patients with marked ascites. We therefore conclude that the enhanced availability of tyrosine in cirrhotics does not influence catecholamine biosynthesis in peripheral sympathetic neurons.

Key words

Tyrosine loading Plasma catecholamines Hepatic cirrhosis 

Abbreviations

D

dopamine

E

epinephrine

NE

norepinephrine

Tyr

tyrosine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agharanya JC, Wurtman RJ (1982) Effect of acute administration of large neutral and other amino acids on urinary excretion of catecholamines. Life Sci 30:739–746Google Scholar
  2. 2.
    Agharanya JC, Wurtman RJ (1982) Studies on the mechanism by which tyrosine raises urinary catecholamines. Biochem Pharmacol 31:3577–3580Google Scholar
  3. 3.
    Agharanya JC, Alonso R, Wurtman RJ (1981) Changes in catecholamine excretion after short-term tyrosine ingestion in normally fed human subjects. Am J Clin Nutr 34:82–87Google Scholar
  4. 4.
    Alonso R, Agharanya JC, Wurtman RJ (1980) Tyrosine loading enhances catecholamine excretion by rats. J Neural Transm 49:31–43Google Scholar
  5. 5.
    Alonso R, Gibson CJ, Wurtman RJ, Agharanya JC, Prieto L (1982) Elevation of urinary catecholamines and their metabolites following tyrosine administration in humans. Biol Psychol 17:781–790Google Scholar
  6. 6.
    Andersson SM, Salaspuro M, Ohisalo JJ (1982) Metabolic basis of hypertyrosinemia in liver disease. Gastroenterology 82:554–557Google Scholar
  7. 7.
    Axelrod J, Tomchick R (1958) Enzymatic o-methylation of epinephrine and other catechols. J Biol Chem 233:702–705Google Scholar
  8. 8.
    Badawy AAB, Williams DL (1982) Enhancement of rat brain catecholamine synthesis by administration of small doses of tyrosine and evidence for substrate inhibition of tyrosine hydroxylase activity by large doses of the amino acid. Biochem J. 206:165–168Google Scholar
  9. 9.
    Benedict CR, Anderson GH, Sole MJ (1983) The influence of oral tyrosine and tryptophan feeding on plasma catecholamines in man. Am J Clin Nutr 38:429–435Google Scholar
  10. 10.
    Bortz J (1977) Lehrbuch der Statistik. Springer, BerlinGoogle Scholar
  11. 11.
    Burghardt W, Wernze H (1985) Plasmakatecholamine als prognostischer Indikator bei Leberzirrhose: Dissoziation zwischen Plasma-Renin-Aktivität (PRA), Aldosteron and Plasma-Noradrenalin in verschiedenen Zirrhosestadien. Klin Wochenschr [Suppl IV] 63:178Google Scholar
  12. 12.
    Cuche JL, Prinseau J, Selz F, Ruget G, Tual JL, Reingeissen L, Devoisin M, Boglin A, Guédon J, Fritel D (1985) Oral load of tyrosine or L-dopa and plasma levels of free and sulfoconjugated catecholamines in healthy men. Hypertension 7:81–89Google Scholar
  13. 13.
    Epstein M (1983) Renal sodium handling in cirrhosis. In: Epstein M (ed) The kidney in liver disease. 2nd Edn Elsevier, New York, pp 25–53Google Scholar
  14. 14.
    Esler M, Willet J, Leonard P, Hasking G, Johns J, Little P, Jennings G (1984) Plasma noradrenaline kinetics in humans. J Auton Nerv Syst 11:125–144Google Scholar
  15. 15.
    Gibson CJ, Wurtman RJ (1977) Physiological control of brain catechol synthesis by brain tyrosine concentration. Biochem Pharmacol 26:1137–1142Google Scholar
  16. 16.
    Growdon JH, Melamed E, Logue M, Hefti F, Wurtman RJ (1982) Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic acid levels in patients with Parkinson's disease. Life Sci 30:827–832Google Scholar
  17. 17.
    Henriksen JH, Christensen NJ, Ring-Larsen H (1981) Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis. Relation to haemodynamics. Clin Physiol 1:293–304Google Scholar
  18. 18.
    Hörtnagl H, Lochs H, Kleinberger G, Hackl JM, Hammerle AF, Binder H, Wewalka F (1981) Plasma catecholamines in hepatic coma and liver cirrhosis: Role of octopamine. Klin Wochenschr 59:1159–1164Google Scholar
  19. 19.
    Levine RJ, Conn HO (1967) Tyrosine metabolism in patients with liver disease. J Clin Invest 46:2012–2020Google Scholar
  20. 20.
    Morgan MY, Marshall AW, Milsom JP, Sherlock S (1982) Plasma amino-acid patterns in liver disease. Gut 23:362–370Google Scholar
  21. 21.
    Peuler JD, Johnson GA (1977) Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci 21:625Google Scholar
  22. 22.
    Rasmussen DD, Ishizuka B, Quigley ME, Yen SSC (1983) Effects of tyrosine and tryptophan ingestion on plasma catecholamine and 3,4-dihydroxyphenylacetic acid concentrations. J Clin Endocrinol Metab 57:760–763Google Scholar
  23. 23.
    Ring-Larsen H, Hesse B, Henriksen JH, Christensen NJ (1982) Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: Plasma norepinephrine concentration, hepatic extraction, and renal release. Hepatology 2:304–310Google Scholar
  24. 24.
    Wernze H (1982) Leber und Endokrinium: Mineralokortikoide, sympathikoadrenales System. In: Tittor W, Schwalbach G, Gehring D (eds) Chronische Lebererkrankungen. Ursache, Entstehung, Verlauf. Thieme, Stuttgart, pp 36–42Google Scholar
  25. 25.
    Willet I, Esler M, Burke F, Leonard P, Dudley F (1985) Total and renal sympathetic nervous system activity in alcoholic cirrhosis. J Hepatol 1:639–648Google Scholar
  26. 26.
    Wurtman RJ, Hefti F, Melamed E (1980) Precursor control of neurotransmitter synthesis. Pharmacol Rev 32:315–335Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. Wernze
    • 1
  • K. L. Diehl
    • 1
  • P. Hermann
    • 1
  • G. Peter
    • 1
  1. 1.Medizinische Klinik und Dermatologische Klinik der Universität WürzburgGermany

Personalised recommendations