Journal of Molecular Evolution

, Volume 17, Issue 6, pp 368–376 | Cite as

Evolutionary trees from DNA sequences: A maximum likelihood approach

  • Joseph Felsenstein


The application of maximum likelihood techniques to the estimation of evolutionary trees from nucleic acid sequence data is discussed. A computationally feasible method for finding such maximum likelihood estimates is developed, and a computer program is available. This method has advantages over the traditional parsimony algorithms, which can give misleading results if rates of evolution differ in different lineages. It also allows the testing of hypotheses about the constancy of evolutionary rates by likelihood ratio tests, and gives rough indication of the error of the estimate of the tree.

Key words

Evolution Phylogeny Maximum likelihood Parsimony Estimation DNA sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Camin J H, Sokal R R (1965) Evolution 19:311–326Google Scholar
  2. Cannings C, Thompson E A, Skolnick M H (1976) Adv Appl Probab 8:622–625Google Scholar
  3. Cavender J A (1978) Math Biosci 40:271–280Google Scholar
  4. Chakraborty R (1977) Can J Genet Cytol 19:217–223Google Scholar
  5. Colless D H (1970) Syst Zool 16:289–295Google Scholar
  6. Dahlquist G, Björck A, Anderson N (1974) Numerical Methods. Englewood Cliffs, Prentice Hall, New JerseyGoogle Scholar
  7. Dempster A P, Laird M N, Rubin D B (1977) J R Stat Soc B 39:1–38Google Scholar
  8. Edwards A W F (1963) Heredity 18:553Google Scholar
  9. Edwards A W F, Cavalli-Sforza (1964). Phenetic and phylogenetic classification. Heywood V H, McNeill J (eds) Systematics Association Publication No 6 Systematics Association, London, pp 67–76Google Scholar
  10. Elston R C, Stewart J (1971) Hum Hered 21:523–542Google Scholar
  11. Erdmann V A (1979) Nucleic Acids Res 6:r29-r44Google Scholar
  12. Estabrook G F, Landrum L (1975) Taxon 24:609–613Google Scholar
  13. Felsenstein J (1973) Syst Zool 22:240–249Google Scholar
  14. Felsenstein J (1978) Syst Zool 27:27–33Google Scholar
  15. Felsenstein J (1978) Syst Zool 27:401–410Google Scholar
  16. Felsenstein J (1979) Syst Zool 28:49–62Google Scholar
  17. Ferris S D, Portnoy S L, Whitt G S (1979) Theor Popul Bio 15:114–139Google Scholar
  18. Fitch W M, Margoliash E (1967) Science 155:279–284Google Scholar
  19. Gillespie J H, Langley C H (1979) J Mol Evol 13:27–34Google Scholar
  20. Holmquist R (1972) J Mol Evol 1:115–133Google Scholar
  21. Kaplan N, Langley C H (1979) J Mol Evol 13, 295–304Google Scholar
  22. Kashyap R L, Subas S (1974) J Theor Biol 47:75–101Google Scholar
  23. Langley C H, Fitch W M (1974). J Mol Evol 3:161–177Google Scholar
  24. Le Quesne W J (1969) Syst Zool 18:201–205Google Scholar
  25. Neyman J (1971) Statistical decision theory and related topics Gupta S S, Yackel J (eds) Academic Press, New York, pp 1–27Google Scholar
  26. Sneath P H A, Sackin J J, Ambler R P (1975) Syst Zool 24:311–332Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Joseph Felsenstein
    • 1
  1. 1.Department of GeneticsUniversity of WashingtonSeattleUSA

Personalised recommendations