Advertisement

Journal of Molecular Evolution

, Volume 10, Issue 4, pp 265–281 | Cite as

A comprehensive examination of protein sequences for evidence of internal gene duplication

  • Winona C. Barker
  • Lynne K. Ketcham
  • Margaret O. Dayhoff
Article

Summary

We have implemented a routine procedure for screening protein sequences for evidence of intragenic duplications. We tested 163 protein sequences representing 116 superfamilies of unrelated proteins. Twenty superfamilies contain proteins with internal gene duplications. The intragenic duplications detected can be divided into two major types. (1) One or more duplications of all or part of a gene produce a protein with two or several detectable regions of sequence homology. Sequences from 18 superfamilies contained this type of duplication. (2) Repeated reduplication of a small DNA segment can produce a protein that is repetitive over most of its length. Three superfamilies contain such repetitive sequences. We also investigated the limits of detection of ancient duplications using sequences derived by random mutation of a model sequence consisting of ten 10-residue repeats. The original repetitive nature of the sequence was usually detected after 250 point mutations even though the ancestral segment could not be accurately reconstructed.

Key words

Internal Gene Duplication Periodic Proteins Computer Examination of Protein Sequences Ancestral Sequences Evolutionary Mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler, R.P., Bruschi, M., LeGall, J. (1971). FEBS Lett.18, 347–350Google Scholar
  2. Barker, W.C., Dayhoff, M.O. (1977). Comp. Biochem. Physiol.51B, 309–315Google Scholar
  3. Barker, W.C., Dayhoff, M.O. (1976). Lipid-associated proteins. In: Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2, (M.O. Dayhoff, ed.), pp. 253–256. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  4. Barker, W.C., Dayhoff, M.O. (1972). Detecting distant relationships: computer methods and results. In: Atlas of Protein Sequence and Structure, Vol. 5, (M.O. Dayhoff, ed.), pp. 101–110. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  5. Black, J.A., Dixon, G.H. (1970). Can. J. Biochem.48, 133–146Google Scholar
  6. Dayhoff, M.O. (1976a). Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  7. Dayhoff, M.O. (1976b). Survey of new data and computer methods of analysis. In: Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2, (M.O. Dayhoff, ed.), pp. 1–8. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  8. Dayhoff, M.O. (1973). Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 1. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  9. Dayhoff, M.O. (1972). Atlas of Protein Sequence and Structure, Vol. 5, Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  10. Dayhoff, M.O., Barker, W.C. (1972): Mechanisms in molecular evolution: examples. In: Atlas of Protein Sequence and Structure, Vol. 5, (M.O. Dayhoff, ed.), pp. 41–45. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  11. Dayhoff, M.O., Barker, W.C., Hunt, L.T. (1976a). Protein superfamilies. In: Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2, (M.O. Dayhoff, ed.), pp. 9–19. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  12. Dayhoff, M.O., Dayhoff, R.E., Hunt, L.T. (1976b). Composition of proteins. In: Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2, (M.O. Dayhoff, ed.), pp. 301–310. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  13. Dayhoff, M.O., Eck, R.V., Park, C.M. (1972). A model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, Vol. 5, (M.O. Dayhoff, ed.), pp. 89–99. Washington, D.C.: National Biomedical Research FoundationGoogle Scholar
  14. DeLange, R.J., Hooper, J.A., Smith, E.L. (1973). J. Biol. Chem.248, 3261–3274Google Scholar
  15. DeVries, A.L., Vandenheede, J., Feeney, R.E. (1971). J. Biol. Chem.246, 305–308Google Scholar
  16. Eck, R.V., Dayhoff, M.O. (1966). Science152, 363–366Google Scholar
  17. Fitch, W.M. (1966). J. Mol. Biol.16, 9–16Google Scholar
  18. Hunt, L.T., Barker, W.C., Dayhoff, M.O. (1974). Biochem. Biophys. Res. Commun.60, 1020–1028Google Scholar
  19. Kretsinger, R.H. (1972). Nature New Biol.240, 85–88Google Scholar
  20. Lode, E.T., Coon, M.J. (1973). Role of rubredoxin in fatty acid and hydrocarbon hydroxylation reactions. In: Iron-sulfur Proteins, Vol. 1, (W. Lovenberg, ed.), pp. 173–191. New York: AcademicGoogle Scholar
  21. Lucas, F., Rudall, K.M. (1968). Extracellular fibrous proteins: the silks. In: Comprehensive Biochemistry, Vol. 26, part B, (M. Florkin and E.H. Stotz, eds.), pp. 475–558. Amsterdam: ElsevierGoogle Scholar
  22. McLachlan, A.D. (1976). J. Mol. Biol.107, 159–174Google Scholar
  23. McLachlan, A.D. (1972). J. Mol. Biol.64, 417–437Google Scholar
  24. McLachlan, A.D. (1971). J. Mol. Biol.61, 409–424Google Scholar
  25. McLachlan, A.D., Stewart, M., Smillie, L.B. (1975). J. Mol. Biol.98, 281–291Google Scholar
  26. Odani, S., Ikenaka, T. (1973). J. Biochem.74, 857–860Google Scholar
  27. Schwartz, R.M., Dayhoff, M.O. (1977). Detection of distant relationships based on point mutation data. In: Proceedings of the International Symposium on Evolution of Protein Molecules, (H. Matsubara and T. Yamanaka, eds.), Tokyo: Univ. Tokyo Press, (in press)Google Scholar
  28. Van der Ouderaa, F.J., DeJong, W.W., Hilderink, A., Bloemendal, H. (1974). Eur. J. Biochem.49, 157–168Google Scholar
  29. Yasunobu, K.T., Tanaka, M. (1973). Syst. Zool.22, 570–589Google Scholar
  30. Ycas, M. (1972). J. Mol. Evol.2, 17–27Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Winona C. Barker
    • 1
  • Lynne K. Ketcham
    • 1
  • Margaret O. Dayhoff
    • 2
  1. 1.National Biomedical Research FoundationGeorgetown University Medical CenterWashington, D.C.USA
  2. 2.Department of Physiology and BiophysicsGeorgetown UniversityWashington, D.C.USA

Personalised recommendations