Skip to main content
Log in

The genetic system of kinetoplasts in trypanosomatides

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

In the present report, the genetic system ofCrithidia oncopelti kinetoplast is used as a model for investigation of kinetoplast DNA (kDNA) structure, its transcription, protein synthesizing apparatus of the kinetoplast and the protein synthesis controlled genetically by kDNA. It was shown that kDNA ofC. oncopelti can be isolated from cells or from kinetoplast fraction in the form of a network complex structure consisting of a lot of circular molecules. These minicircles have a contour length of about 0.83µm and molecular weight of 1.6 × 106.

The kDNA was demonstrated to be of higher AT content type than nuclear DNA. Besides, kDNA is characterized by a lesser degree of clustering of pyrimidines as compared with the nuclear one. The isolated kinetoplasts ofC. oncopelti were shown to exhibit activity of DNA dependent RNA polymerase. The effect of some antibiotics and intercalating substances on RNA synthesis in kinetoplasts and mitochondria appears to be identical.

Kinetoplasts ofC. oncopelti have their own protein synthesizing system, whose components (ribosomes, rRNA, proteins, factors of incorporation) differ from those of the cytoplasm. Inhibition of translation by some antibiotics and of transcription by acriflavin allowed the suggestion that several proteins of kinetoplast ribosomes may be synthesized within this organoid. It was shown then that kDNA may be involved in the formation of the protein synthesizing apparatus in the kinetoplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simpson L., 1972. Int. Rev. Cytol., 32, 139–207.

    Google Scholar 

  2. Kallinikova V. D., 1974. Zhurnal Obshei Biol. (Russ.) 35, 228–235.

    Google Scholar 

  3. Zaitseva G. N., 1976. Biologicheskie nauki (Russ.), in N1, 5–21.

  4. Renger H. C. and Wolstenholm D. R., 1972. J. Cell Biol. 54, 346–364.

    Google Scholar 

  5. Hoffman H. P. and Avers Ch. J., 1973. Science 181, 749–751.

    Google Scholar 

  6. Wesley R. D. and Simpson L., 1973. Biochim. Biophys. Acta 319, 254–266.

    Google Scholar 

  7. Wesley R. D. and Simpson L., 1973. Biochim. Biophys. Acta 319, 267–280.

    Google Scholar 

  8. Zaitseva G. N., Il'in A. V., Chugunov V. A. and Akhobadze V. A., 1970. Biochimia (Russ.) 35, 565–573.

    Google Scholar 

  9. Renger H. C. and Wolstenholm D. R., 1970. J. Cell Biol., 47, 689–702.

    Google Scholar 

  10. Chugunov V. A., Shirshov A. T. and Zaitseva G. N., 1971. Biochimia (Russ.) 36, 630–635.

    Google Scholar 

  11. Marmur J., 1961. J. Mol. Biol. 3, 208–211.

    Google Scholar 

  12. Burton K. and Peterson G. B., 1960. Biochem. J., 75, 17–19.

    Google Scholar 

  13. Vanjushin B. F. and Kirnos M. D. 1974. FEBS Letters 39, 195–199.

    Google Scholar 

  14. Zaitseva G. N., Mett I. L. and Kolesnikov A. A., 1976. Biochimia (Russ.) 41, 1406–1411.

    Google Scholar 

  15. Shirshov A. T. and Zaitseva G. N., 1974. Izvestia Acad. Nauk USSR, seria biol. N 4, 584–587.

    Google Scholar 

  16. Spirin A. S., Lerman M. I., Gavrilova L. P. and Belitsina N. V., 1961. Biochimia (Russ.) 31, 424–431.

    Google Scholar 

  17. Zaitseva G. N., Kolesnikov A. A., Jatsenco I. A., Kirnos M. D. and Vanjushin B. F., 1974. Dokl. Acad. Nauk SSSR 219, 243–245.

    Google Scholar 

  18. Zaitseva G. N. Il'in A. V. Shulga A. V. and Belozerskii A. N., 1968. Dokl. Acad. Nauk SSSR 180, 967–970.

    Google Scholar 

  19. Mazin A. L. and Vanjushin B. F., 1969. Mol. Biol. (Russ.) 3, 846–851.

    Google Scholar 

  20. Chugunov V. A. and Zaitseva G. N., 1970. Dokl. Acad. Nauk SSSR, 192, 672–675.

    Google Scholar 

  21. Hill G. and Bonilla G. A., 1974. J. Protozool., 21, 632–639.

    Google Scholar 

  22. Zaitseva G. N., Aseev V. V. and Maldov D. G., 1974. Antibiotiki (Russ.) 5, 405–410.

    Google Scholar 

  23. Simpson L., 1973. J. Protozool. 20, 2–8.

    Google Scholar 

  24. Steinert M., Van Assel S., Borst P., Mol J. N. M., Kleisen C. M. and Newton B. A., 1973. Exptl. Cell Res., 76, 175–185.

    Google Scholar 

  25. Zaitseva G. N., Chugunov V. A. and Shirshov A. T., 1971. Dokl. Acad. Nauk SSSR 198, 1461–1464.

    Google Scholar 

  26. Laub-Kupersztejn R. and Thirion J., 1974. Biochim. Biophys. Acta 340, 314–322.

    Google Scholar 

  27. Syromyatnikov E. Yu., Shirshov A. T. and Zaitseva G. N., 1973. Biochimia (Russ.) 38, 471–477.

    Google Scholar 

  28. Grivel L., Reijunders L. and Borst P., 1971. Biochim. Biophys. Acta 247, 91–103.

    Google Scholar 

  29. Greco M. P., Cantatore P., Pepe G. and Saccone C., 1973. J. Biochem., 37, 171–179.

    Google Scholar 

  30. Steinert M. and Van Assel S., 1972. in Comparative Biochemistry of Parasites (van den Bossche, H. ed.) pp. 159–166. Acad. Press, New York.

    Google Scholar 

  31. Hill G. H. and Anderson W. A., 1970. Rev. Exptl. Parazitol., 28, 356–380.

    Google Scholar 

  32. Shirshov A. T., Kostrikina N. A., Birjuzova V. I. and Zaitseva G. N., 1975. Izvest. Acad. Nauk SSSR, seria biol. N 5, 759–764.

    Google Scholar 

  33. Barath Z. and Küntzel H., 1972. Proc. Natl. Acad. Sci. U.S. 69, 1371–1374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitseva, G.N., Kolesnikov, A.A. & Shirshov, A.T. The genetic system of kinetoplasts in trypanosomatides. Mol Cell Biochem 14, 47–54 (1977). https://doi.org/10.1007/BF01734164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01734164

Keywords

Navigation