Skip to main content
Log in

Ribosomal RNA evolution by fragmentation of the 23S progenitor: Maturation pathway parallels evolutionary emergence

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The eukaryotic 5.8S and the chloroplast 4.5S ribosomal RNAs were proposed to have arisen from the 5′ and 3′ ends respectively of prokaryotic 23S ribosomal RNA by the introduction of new processing sites during evolution. This hypothesis was supported by comparison of previously published primary sequences; in addition we can draw models of secondary structure in accord with this notion. Finally, we further noted that the sequence of processing cuts in the maturation pathway of ribosomal RNA reflects the probable order in which they arose during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boseley PG, Tuyns A, Birnstiel ML (1978) Nucleic Acids Res 5:1121–1137

    Google Scholar 

  • Bowman CM, Dyer TA (1979) Biochem J 183:605–613

    Google Scholar 

  • Branlant C, Krol A, Machatt MA, Pouyet J, Ebel JP, Edwards K, Kössel H (1981) Nucleic Acids Res 9:4303–4324

    Google Scholar 

  • Brosius J, Dull TJ, Noller HF (1980) Proc Natl Acad Sci USA 77:201–204

    Google Scholar 

  • Curtis SE, Rawson JRY (1981) Gene 15:237–247

    Google Scholar 

  • Doolittle WF, Pace NR (1971) Proc Natl Acad Sci USA 68: 1786–1790

    Google Scholar 

  • Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkhard M, Weil JH (1979) Gene 6:285–306

    Google Scholar 

  • Edwards K, Kössel H (1981) Nucleic Acids Res 9:2853–2869

    Google Scholar 

  • Edwards K, Bedbrook J, Dyer TA, Kössel H (1981) Biochem Int 2:533–538

    Google Scholar 

  • Eperon JC, Anderson S, Nierlich DP (1980) Nature 286:460–466

    Google Scholar 

  • Erdmann VA (1976) Prog Nucleic Acids Res Mol Biol 18:45–90

    Google Scholar 

  • Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KR, Zakharyov VM, Bayev AA (1981) Nucleic Acids Res 9:6953–6958

    Google Scholar 

  • Glotz C, Zwieb C, Brimacombe R, Edwards K, Kössel H (1981) Nucleic Acids Res 9:3287–3306

    Google Scholar 

  • Hall LMC, Maden BEH (1980) Nucleic Acids Res 8:5993–6005

    Google Scholar 

  • Hartley MR (1979) Eur J Biochem 96:311–320

    Google Scholar 

  • Herr W, Noller HF (1979) J Mol Biol 130:421–432

    Google Scholar 

  • Ishikawa H (1977) Comp Biochem Physiol 56B:229–234

    Google Scholar 

  • Jacq B (1981) Nucleic Acids Res 9:2913–2932

    Google Scholar 

  • Jordan BR, Latil-Damotte M, Jourdan R (1980) Nucleic Acids Res 8:3565–3573

    Google Scholar 

  • Kramer RA, Philippsen P, Davis RW (1978) J Mol Biol 123: 405–416

    Google Scholar 

  • Long EO, Dawid IB (1980) J Mol Biol 138:873–878

    Google Scholar 

  • Machatt MA, Ebel JP, Branlant C (1981) Nucleic Acids Res 9:1533–1549

    Google Scholar 

  • MacKay RM (1981) FEBS Letts 123:17–18

    Google Scholar 

  • MacKay RM, Spencer DF, Doolittle WF, Gray MW (1980) Eur J Biochem 112:561–576

    Google Scholar 

  • Moran CP Jr., Bott KF (1979) J Bacteriol 140:742–744

    Google Scholar 

  • Nazar RN (1980) FEBS Letts 119:212–214

    Google Scholar 

  • Nazar RN, Sitz TO (1980) FEBS Letts 115:71–76

    Google Scholar 

  • Nazar RN, Sitz TO, Busch H (1975) J Biol Chem 250:8591–8597

    Google Scholar 

  • Noller HF, Woese CR (1981) Science 212:403–411

    Google Scholar 

  • Noller HF, Kop JA, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Nucleic Acids Res 9:6167–6189

    Google Scholar 

  • Pace NR, Walker TA, Schroeder E (1977) Biochem 16:5321–5328

    Google Scholar 

  • Pavlakis GN, Jordan BR, Wurst RM, Vournakis JN (1979) Nucleic Acids Res 7:2213–2238

    Google Scholar 

  • Rubin GM (1973) J Biol Chem 248:3860–3875

    Google Scholar 

  • Takaiwa F, Sugiura M (1980) Mol Gen Genet 180:1–4

    Google Scholar 

  • Trapman J, Planta RJ (1976) Biochem Biophys Acta 442: 265–274

    Google Scholar 

  • Van Etten RA, Walberg MW, Clayton DA (1980) Cell 22: 157–170

    Google Scholar 

  • Veldman GM, Klootwijk J, DeRegt VCHF, Planta RJ, Branlant C, Krol A, Ebel JP (1981) Nucleic Acids Res 9:6935–6952

    Google Scholar 

  • Walker WF (1981) FEBS Letts 126:150–151

    Google Scholar 

  • Wildeman AG, Nazar RN (1980) J Biol Chem 255:11896–11900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, C.G., Gerbi, S.A. Ribosomal RNA evolution by fragmentation of the 23S progenitor: Maturation pathway parallels evolutionary emergence. J Mol Evol 18, 329–336 (1982). https://doi.org/10.1007/BF01733899

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733899

Key words

Navigation