Advertisement

Klinische Wochenschrift

, Volume 63, Issue 23, pp 1212–1217 | Cite as

Pharmacokinetics of methimazole in humans

  • J. H. Hengstmann
  • H. Hohn
Originalien

Summary

A newly developed method for extracting and measuring methimazole in biological fluids was used to study the pharmacokinetics of methimazole in two euthyroid and eight hyperthyroid subjects. The volume of distribution approximated total body water; the biological half-life was 2–3 h in euthyroid and about 6 h in hyperthyroid patients. Total clearance was lower in hyperthyroid patients than in euthyroid subjects, and it did not increase after thyroid function was normalized. Bioavailability in euthyroid subjects was greater than 1 but only 0.5 in hyperthyroid subjects. The reasons for these observed differences are not known.

Key words

Methimazole Analytical method Pharmacokinetics Hyperthyroidism Bioavailability 

Abbreviations

AUC

area under the serum concentration — time curve

HCl

hydrochloric acid

HPLC

high pressure liquid chromatography

M

molar

ml/min

milliliter per minute

N

normal

NaOH

aqueous sodium hydroxide

ng/ml

nanogram per milliliter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltzer J, Lartz HG, Van Zwieten PA (1975) Serumspiegel und Urinausscheidung von14C-thiamazol bei Patienten mit Schilddrüsenüberfunktion. Dtsch Med Wochenschr 100:548–552Google Scholar
  2. Burrell CD, Fraser R, Doniach D (1956) The low toxicity of carbimazole. Br Med J 23:1453–1456Google Scholar
  3. Burrell CD (1956) Fatal marrow aplasia after treatment with carbimazole. Br Med J 23:1456Google Scholar
  4. Dahlberg PA, Karisson FA, Lindstrom B, Wide L (1981) Studies of thyroid hormone and methimazole levels in patients with Graves' disease on a standardized drug regimen. Clin Endocrinol 14:555–562Google Scholar
  5. Jansson R, Dahlberg PA, Lindström B (1983) Comparative bioabailability of carbimazole and methimazole. Int J Clin Pharmacol, Ther Toxicol 21:505–510Google Scholar
  6. Jansson R, Dahlberg PA, Johansson H, Lindström B (1983) Intrathyroidal concentrations of methimazole in patients with Graves' disease. Clin Endocrinol Metab 57:129–132Google Scholar
  7. Marchant B, Papapetrou DP, Alexander WD (1975) Relation between thyroid iodine content and the accumulation and oxidation of35S-methimazole in the rat. Endocrinology 97:154–161Google Scholar
  8. Nabil N, Miner DJ, Amatruda JM (1982) Methimazole: An alternative route of administration. Clin Endocrinol Metab 54:180Google Scholar
  9. Pittman JA, Beschi RJ, Smitherman TC (1971) Methimazole: Its absorption and excretion in man and tissue distribution in rats. Clin Endocrinol 33:182–185Google Scholar
  10. Skellern GG, Stenlake JB, Williams WD, McLarty DG (1974) Plasma concentrations of methimazole, a metabolite of carbimazole, in hyperthyroid patients. Br J Clin Pharmacol 1:265–269Google Scholar
  11. Skellern GG, Knight BI, Low CKL, Alexander WD, McLarty DG, Kalk WJ (1980) The pharmacokinetics of methimazole after oral administration of carbimazole and methimazole in hyperthyroid patients. Br J Clin Pharmacol 9:137–143Google Scholar
  12. Taurog A (1976) The mechanism of action of the thioureylene antithyroid drugs. Endocrinology 98:1031–1046Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. H. Hengstmann
    • 1
    • 2
  • H. Hohn
    • 1
  1. 1.Medizinische Universitätsklinik BonnGermany
  2. 2.Krankenhaus am Urban III. Innere AbteilungBerlin 61

Personalised recommendations