Journal of Molecular Evolution

, Volume 15, Issue 4, pp 333–338 | Cite as

The earliest catabolic pathways

  • Patricia H. Clarke
  • Sidney R. Elsden


Anaerobic catabolism of amino acids may have provided the main source of energy for primitive microorganisms. Examples are given of amino acid catabolic reactions coupled to substrate level phosphorylations occurring in present-day anaerobes which may be biochemical fossils from a very early stage of the evolution of procaryotes.

Key words

Catabolic pathways Anaerobic life Substrate-level phosphorylation Amino acid catabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, H.A. (1961). Fermentation of nitrogenous compounds. In: The bacteria, Vol II. I.C. Gunsalus, R.Y. Stanier, eds., pp. 151–207. New York: Academic PressGoogle Scholar
  2. Bauchop, T., Elsden, S.R. (1960). J. Gen. Microbiol.23, 457–469Google Scholar
  3. Broda, E. (1975). The evolution of the bioenergetic processes. Oxford: PergamonGoogle Scholar
  4. Costilow, R.N., Laycock, L. (1968). J. Bacteriol.96, 1011–1020Google Scholar
  5. Costilow, R.N., Laycock, L. (1969) J. Bacteriol.100, 662–667Google Scholar
  6. Dekker, K., Jungermann, K., Thauer, R.K. (1970). Angew. Chem. Int. Ed.9, 138–158Google Scholar
  7. Heath, E.C., Hurwitz, J., Horecker, B.L., Ginsberg, A. (1958). J. Biol. Chem.231, 1009–1029Google Scholar
  8. Hoogerheide, J., Kocholaty, W. (1938). Biochem. J.32, 949–957Google Scholar
  9. Korzenowsky, M., Werkman, C.H. (1953). Arch. Biochem. Biophys.46, 174–185Google Scholar
  10. Krebs, H.A., Kornberg, H.L. (1957). Energy transformations in living matter, p. 274. Berlin Heidelberg New York: SpringerGoogle Scholar
  11. Miller, S.L., Orgel, L.E. (1974). The origins of life on earth. Englewood Cliffs, New Jersey: Prentice HallGoogle Scholar
  12. Oparin, A.I. (1968). Genesis and evolutionary development of life, p. 156. New York: Academic PressGoogle Scholar
  13. Orgel, L.E. (1973). In: The origins of life, p. 175. London: Chapman and HallGoogle Scholar
  14. Ponnamperuma, C., Gabel, N.W. (1974). The precellular evolution and organization of molecules. In: Evolution in the microbial world. M.J. Carlile, J.J. Skehel, eds., pp. 393–413. Cambridge: Cambridge University PressGoogle Scholar
  15. Quastel, J.H., Stephenson, M., Whetham, M.D. (1925). Biochem. J.19, 304–317Google Scholar
  16. Shoesmith, J.G., Sherris, J.C. (1960). J. Gen. Microbiol.22, 10–24Google Scholar
  17. Stadtman, T.C. (1967). In: The anaerobic bacteria. V. Fredette, ed. pp. 25–39. Montreal Institute of Microbiology and Hygiene, Montreal UniversityGoogle Scholar
  18. Stadtman, T.C., Elliott, P., Tiemann, L. (1958). J. Biol. Chem.231, 961–973Google Scholar
  19. Stalon, V., Ramos, F., Piérard, A., Wiame, J-M. (1967). Biochim. Biophys. Acta139, 91–97Google Scholar
  20. Stalon, V., Ramos, F., Piérard, A., Wiame, J-M. (1972). Eur. J. Biochem.29, 25–35Google Scholar
  21. Stephenson, M., Whetham, M.D. (1924). Biochem. J.18, 498–506Google Scholar
  22. Stickland, L.H. (1934). Biochem. J.28, 1746–1759Google Scholar
  23. Valentine, R.C., Boganowsky, R., Gaudy, E., Wolfe, R.S. (1962). J. Biol. Chem.237, 2271–2277Google Scholar
  24. Woods, D.D. (1936). Biochem. J.30, 1934–1946Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Patricia H. Clarke
    • 1
  • Sidney R. Elsden
    • 2
  1. 1.Department of BiochemistryUniversity College LondonEngland
  2. 2.School of Biological SciencesUniversity of East AngliaNorwichEngland

Personalised recommendations