Advertisement

BIT Numerical Mathematics

, Volume 35, Issue 1, pp 1–18 | Cite as

Comparing stability properties of three methods in DAEs or ODEs with invariants

  • Anders Barrlund
Article

Abstract

Three approaches for solving ODEs with invariants or DAEs are the constrained least squares method, the coordinate projection method and the derivative projection method. The stability properties of these three methods are compared for linear ODEs with linear invariants. There exist examples where each of the three approaches is to prefer.

Key words

Differential algebraic equation projection method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Alishenas,Zur numerische Behandlung, Stabilisierung durch Projektion und Modellierung mechanischer Systeme mit Nebenbedingungen und Invarianten, Royal Institute of Technology, Stockholm, Ph.D. thesis, 1992.Google Scholar
  2. 2.
    A. Barrlund,Constrained least squares methods for linear timevarying DAE systems, Numer Math., 60 (1991), pp. 145–161.Google Scholar
  3. 3.
    A. Barrlund,Constrained least squares methods for non-linear differential algebraic systems, Report UMINF-91.15, University of Umeå, 1991.Google Scholar
  4. 4.
    A. Barrlund,Numerical Solution of higher index differential/algebraic systems, University of Umeå, Ph.D. thesis, 1991.Google Scholar
  5. 5.
    K. E. Brenan, S. L. Campbell and L. R. Petzold,Numerical Solution of Initial Value Problems in Ordinary Differential Equations, North Holland Publishing Co. 1989.Google Scholar
  6. 6.
    E. Eich,Projizierende Mehrschrittverfahren zur numerische Lösung der Bewegungsgleichungen technischer Mehrkörpersysteme mit Zwangsbedingungen und Unstetigkeiten, Institute für Mathematik, Universität Augsburg, Ph.D. thesis, 1991.Google Scholar
  7. 7.
    E. Eich,Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints, SIAM J. Numer. Anal., 30 (1993), pp. 1467–1482.Google Scholar
  8. 8.
    C. Führer,Differential-Algebraische Gleichungssysteme in Mechanische Mehrkörpersystemen, Math. Institute, Technische Universität München, Ph.D. thesis, 1988.Google Scholar
  9. 9.
    C. Führer and B. Leimkuhler,A new class of generalized inverses for the solution of discretized Euler-Lagrange equations, in NATO Advanced Research Workshop on Real-Time Integration Methods for Mechanical Systems Simulation, E. Haug and R. Deyo, eds., Springer, Heidelberg, 1990.Google Scholar
  10. 10.
    C. Führer and B. Leimkuhler,Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math., 59 (1991), pp. 55–69.Google Scholar
  11. 11.
    E. Hairer, S. P. Nørsett and G. Wanner,Solving Ordinary Differential Equations I. Nonstiff Problems, Springer, 1987.Google Scholar
  12. 12.
    C. Lubich,h 2 extrapolation methods for differential-algebraic equations of index 2, Impact Comp. Sci. Eng., 1 (1989), pp. 260–268.Google Scholar
  13. 13.
    R. Mathias,Matrices with positive definite hermitian part; Inequalities and linear systems, SIAM J. Matrix Anal., 13 (1992), pp. 640–654.Google Scholar
  14. 14.
    L. F. Shampine,Conservation laws and the numerical solution of ODEs, Comp. and Math. with Appls., Part B., 12, 1986.Google Scholar

Copyright information

© BIT Foundation 1995

Authors and Affiliations

  • Anders Barrlund
    • 1
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden

Personalised recommendations