Journal of Molecular Evolution

, Volume 4, Issue 1, pp 99–111 | Cite as

The possibility of spontaneous resolution of enantiomers on a catalyst surface

  • L. G. Harrison
Article

Summary

A model reaction system is discussed, in which an asymmetric molecule is formed on a solid catalyst surface, the stereospecificity of which can be modified by adsorption of the asymmetric product. Spontaneous resolution is shown to be possible if modification of one active site needs two adsorbed molecules. This discussion is related to:
  1. a)

    my suggestion (Harrison, 1973) that enantiomers of a biochemical system, or primitive organism, might separate territorially if the organism consisted of two parts, one in the ocean and the other sessile on the ocean floor, which must unite for stereospecific reproduction;

     
  2. b)

    the theory of “dissipative structures” (Prigogine, 1967; Glansdorff & Prigogine, 1971);

     
  3. c)

    possible active sites on transition metal surfaces (May, 1972) and on sulphides;

     
  4. d)

    conditions required in an experimental programme to achieve spontaneity in an asymmetric synthesis, and to prove that spontaneity has been achieved (considered in relation to a report of spontaneity by Isoda, Ichikawa & Shimamoto, 1958).

     

Key words

Asymmetric Catalysis Spontaneous Resolution Enantiomers Dissipative Structures Origin of Asymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.S. (1972). Reactivity of solids. In: Proc. 7th. Internat. Symp., J.S. Anderson, M.W. Roberts, eds., p. 1. London: Chapman and HallGoogle Scholar
  2. Bonner, W.A. (1972). Exobiology. In: Frontiers of biology, C. Ponnamperuma, ed., Vol.23, Chap. 6. Amsterdam: North-HollandGoogle Scholar
  3. Decker, P. (1974). J. Mol. Evol. 4, 49Google Scholar
  4. Frank, F.C. (1953). Biochim. Biophys. Acta, 11, 459Google Scholar
  5. Glansdorff, P., Prigogine, I. (1971). Thermodynamic theory of structure, stability and fluctuations. London — New York: WileyGoogle Scholar
  6. Harrison, L.G. (1973). J. Theoret. Biol. 39, 333Google Scholar
  7. Isoda, T., Ichikawa, A., Shimamoto, T. (1958). Rikagaku Kenkyusho Hokoku (J. Inst. Phys. and Chem. Research, Tokyo), 34, 134Google Scholar
  8. May, J.W. (1972). Proc. Roy. Soc. (London), A331, 185Google Scholar
  9. Ogden, J.S., Ricks, M.J. (1972). J. Chem. Phys. 56, 1658Google Scholar
  10. Pasteur, L. (1848). Comptes Rendus Acad. Sci. (Paris), 26, 535Google Scholar
  11. Pincock, R.E., Perkins, R.R., Ma, A.S., Wilson, K.R. (1971). Sci. 174, 1018Google Scholar
  12. Prigogine, I. (1967). Fast reactions and primary processes in chemical kinetics. In: Proc. 5th Nobel Symp., S. Claesson, ed., p. 371. Stockholm: Almqvist and Wiksell; New York: InterscienceGoogle Scholar
  13. Seelig, F.F. (1971a). J. Theoret. Biol. 31, 355Google Scholar
  14. Seelig, F.F. (1971b). J. Theoret. Biol. 32, 93Google Scholar
  15. Seelig, F.F. (1972). J. Theoret. Biol. 34, 197Google Scholar
  16. Turing, A.M. (1952). Phil. Trans. Roy. Soc. (London), B237, 37Google Scholar
  17. Weisser, O., Landa, S. (1973). Sulphide catalysts, their properties and applications. Oxford — New York: Pergamon Press. Braunschweig: Friedr. Vieweg u. SohnGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • L. G. Harrison
    • 1
  1. 1.Department of ChemistryThe University of British ColumbiaVancouver 8Canada

Personalised recommendations