Advertisement

Journal of Molecular Evolution

, Volume 15, Issue 2, pp 103–112 | Cite as

Nucleotide-amino acid interactions and their relation to the genetic code

  • Jacques Reuben
  • Freddie E. Polk
Article

Summary

The apparent dissociation constants of the complexes of AMP with the methyl esters of amino acids in aqueous solution exhibit good correlations with features of the genetic code and with the frequencies of occurrence of amino acid residues in proteins. Thus it is likely that chemically selective nucleotide-amino acid interactions were involved in the processes of chemical evolution that have led to the emergence of the genetic code. Based on these correlations a storage device for the information regarding nucleotide-amino acid interactions is proposed. It involves processes of simultaneous polymerization to polynucleotides and polypeptides.

Key words

Hydrophobic interactions NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crick, F.H.C. (1968). J. Mol. Biol.38, 367–379Google Scholar
  2. De Fontaine, D.L., Ross, D.K., Ternai, B. (1977). J. Phys. Chem.81, 792–798Google Scholar
  3. Deranleau, D.A. (1969). J. Am. Chem. Soc.91, 4044–4049Google Scholar
  4. Dimicoli, J.-L., Hélène, C. (1971). Biochimie53, 331–345Google Scholar
  5. Fox, J.L. (1978). Chem. Eng. News56 (27), 17–18Google Scholar
  6. Gamow, G. (1954). Nature173, 318–319Google Scholar
  7. Hélène, C. (1976). Stud. Biophys.57, 211–222Google Scholar
  8. Hélène, C. (1977). Recherche8, 122–132Google Scholar
  9. Hélène, C., Montenay-Garestier, T., Dimicoli, J.-L. (1971a). Biochim. Biophys. Acta254, 349–365Google Scholar
  10. Hélène, C., Dimicoli, J.-L., Brun, F. (1971b). Biochemistry10, 3802–3809Google Scholar
  11. Lawaczeck, R., Wagner, K.G. (1974). Biopolymers13, 2003–2014Google Scholar
  12. Mantsch, H.H., Neurohr, K. (1978). FEBS Letters86, 57–60Google Scholar
  13. Mitzutani, H., Ponnamperuma, C. (1977). Origins Life8, 183–219Google Scholar
  14. Morita, F. (1974). Biochim. Biophys. Acta343, 674–681Google Scholar
  15. Nelsestuen, G.L. (1978). J. Mol. Evol.11, 109–120Google Scholar
  16. Raszka, M., Mandel, M. (1972). J. Mol. Evol.2, 38–43Google Scholar
  17. Reeck, G. Handbook of Biochemistry, 2nd. edi. (1970) Sober, H.A., ed. pp. C281-C287. Cleveland, Ohio: The Chemical Rubber Co.Google Scholar
  18. Reuben, J. (1978). FEBS Letters94, 20–24Google Scholar
  19. Saxinger, C., Ponnamperuma, C. (1974). Origins Life5, 189–200Google Scholar
  20. Saxinger, C., Ponnamperuma, C., Woese, C. (1971). Nature, New Biology,234, 172–174Google Scholar
  21. Wagner, K.G., Lawaczeck, R. (1972). J. Magn. Reson.8, 164–174Google Scholar
  22. Weber, A.L., Lacey, J.D., Jr. (1978). J. Mol. Evol.11, 199–210Google Scholar
  23. Woese, C.R. (1970). Bioscience,20, 471–459Google Scholar
  24. Woese, C.R. (1973). Naturwissenschaften,60, 447–459Google Scholar
  25. Woese, C.R., Dugre, D.H., Dugre, J.A., Kondo, M., Saxinger, W.C. (1966). Symp. Quant. Biol.31, 723–736Google Scholar
  26. Zubay, G., Doty, P. (1958). Biochim. Biophys. Acta29, 47–58Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jacques Reuben
    • 1
  • Freddie E. Polk
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations