Operations-Research-Spektrum

, Volume 9, Issue 2, pp 87–92 | Cite as

Regular equilibrium points of bimatrix games

  • M. J. M. Jansen
Theoretical Papers

Summary

In this paper we give a new definition of a regular equilibrium point of a bimatrix game, a concept that was introduced by Harsanyi and further developed by van Damme. Furthermore the strong stability of regular equilibria is discussed.

Keywords

Equilibrium Point Strong Stability Regular Equilibrium 

Zusammenfassung

In der vorliegenden Arbeit wird eine neue Definition eines regulären Gleichgewichtspunkts eines Bimatrix-Spiels gegeben. Sie knüpft an ein Konzept an, das von Harsanyi eingeführt und von van Damme weiterentwickelt worden ist. Darüber hinaus wird die strenge Stabilität regulärer Gleichgewichte erörtert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damme EEC van (1983) Refinements of the Nash equilibrium concept. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  2. 2.
    Harsanyi JC (1973) Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points. Int J Game Theory 2:1–23CrossRefGoogle Scholar
  3. 3.
    Harsanyi JC (1973) Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2:235–250CrossRefGoogle Scholar
  4. 4.
    Jansen MJM (1981) Regularity and stability of equilibrium points of bimatrix games. Math Oper Res 6:530–550CrossRefGoogle Scholar
  5. 5.
    Kojima M, Okada A, Shindoh S (1985) Strongly stable equilibrium points ofn-person noncooperative games. Math Oper Res 10:650–663CrossRefGoogle Scholar
  6. 6.
    Meister H (1984) A generalization of an oddness theorem for bimatrix games. OR Spektrum 6:217–222CrossRefGoogle Scholar
  7. 7.
    Myerson RB (1978) Refinements of the Nash equilibrium concept. Int J Game Theory 7:73–80CrossRefGoogle Scholar
  8. 8.
    Nash JF (1951) Non-cooperative games. Ann Math 54:286–295CrossRefGoogle Scholar
  9. 9.
    Okada A (1984) Strictly perfect equilibrium points of bimatrix games. Int J Game Theory 13:145–154CrossRefGoogle Scholar
  10. 10.
    Potters JAM (Private communication)Google Scholar
  11. 11.
    Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4:25–55CrossRefGoogle Scholar
  12. 12.
    Wu Wentsn, Jiang Jia-he (1962) Essential equilibrium points ofn-person noncooperative games. Sci Sinica 11:1307–1322Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. J. M. Jansen
    • 1
  1. 1.Open UniversityHeerlenGermany

Personalised recommendations