Skip to main content
Log in

Interconversion phenomena between two kinetic forms of class a pyruvate kinase from Ehrlich ascites tumor cells

  • Review and General Articles
  • b. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    The regulatory properties of two interconvertible kinetic forms of class A pyruvate kinase from Ehrlich ascites tumor cells have been studied with a partially purified enzyme preparation free of interfering enzymatic activities.

  2. 2.

    The hyperbolic form shows Michaelis-Menten kinetics for P-pyruvate, with high affinity for this substrate and low affinity for the inhibitory amino acids alanine and phenylalanine. The sigmoidal form displays positive cooperativity respect to P-pyruvate (n = 1.4), with lower affinity for this substrate and higher affinity for the inhibitory amino acids.

  3. 3.

    The equilibrium between the hyperbolic and the sigmoidal forms of the enzyme is affected by substrates and effectors. P-pyruvate, ADP and Fru-P2 shift the equilibrium to the hyperbolic form while ATP, alanine and phenylalanine stabilize the sigmoidal form.

  4. 4.

    Effector metabolites affect the molecular weight of the protein, acting on an equilibrium between dimers and tetramers. P-pyruvate and ADP associate the enzyme to a tetramer while ATP, alanine and phenylalanine favor the occurrence as a dimer. The positive modifier Fru-P2 did not associate the enzyme to the tetramer, even at 1mm concentration.

  5. 5.

    A tentative molecular model for pyruvate kinase A on the basis of the kinetic and aggregation interconversion is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTE:

dithioerythritol

Fru-P2 :

fructose 1,6-bis-phosphate

P-pyruvate:

phosphoenolpyruvate

References

  1. Susor, W. A. and Rutter, W. J., 1968. Biochem. Biophys. Res. Commun. 30, 14–20.

    Google Scholar 

  2. Imamura, K. and Tanaka, T., 1972. J. Biochem. Tokyo 71, 1043–1051.

    Google Scholar 

  3. Imamura, K., Taniuchi, K. and Tanaka, T., 1972. J. Biochem. Tokyo 72, 1001–1015.

    Google Scholar 

  4. Carbonell, J., Felíu, J. E., Marco, R. and Sols, A., 1973. Eur. J. Biochem. 37, 148–156.

    Google Scholar 

  5. Pogson, C. I., 1968. Biochem. J. 110, 67–77.

    Google Scholar 

  6. Marco, R., Carbonell, J. and Llorente, P., 1971. Biochem. Biophys. Res. Commun. 43, 126–132.

    Google Scholar 

  7. Walker, P. R. and Potter, V. R., 1973. J. Biol. Chem. 248, 4610–4616.

    Google Scholar 

  8. Ibsen, K. H. and Kruger, E., 1973. Arch. Biochem. Biophys. 157, 509–513.

    Google Scholar 

  9. Felíu, J. E., Díaz-Gil, J. J., García-Cañero, R. and Gosálvez, M., 1975. FEBS Lett. 50, 334–338.

    Google Scholar 

  10. Sillero, A., Sillero, M. A. G. and Sols, A., 1969. Eur. J. Biochem. 10, 351–354.

    Google Scholar 

  11. Adams, H., 1963., in Bergmeyer, H. U. (Ed.) Methods of Enzymatic Analysis, Academic Press, New York, p. 573–577.

    Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193, 265–272.

    Google Scholar 

  13. Altman, P. L. and Dittmer, D. S., 1973. Biology Data Book, 2nd edn, Fed. Amer. Soc. Exptl. Biol., Washington.

    Google Scholar 

  14. Barman, T. E., 1969. Enzyme Handbook, Springer-Verlag, Berlin-New York.

    Google Scholar 

  15. Imamura, K. and Tanaka, T., 1972. J. Biochem. Tokyo 71, 1043–1051.

    Google Scholar 

  16. Rozengurt, E., Jiménez de Asúa, L. and Carminatti, H., 1969. J. Biol. Chem. 244, 3142–3147.

    Google Scholar 

  17. Frieden, C., 1970. J. Biol. Chem. 245, 5788–5799.

    Google Scholar 

  18. Koshland, D. E., Jr., 1970. in Boyer, P. D. (Ed.) The Enzymes, Academic Press, New York, vol. 1, p. 341–396.

    Google Scholar 

  19. Morrison, J. F. and Heyde, E., 1972. An. Rev. Biochem. 41, 29–54.

    Google Scholar 

  20. Sparmann, G., Schulz, J. and Hofman, E., 1973. FEBS Lett. 36, 305–308.

    Google Scholar 

  21. Schulz, J., Sparmann, G. and Hofman, E., 1975. FEBS Lett. 50, 346–350.

    Google Scholar 

  22. Reynard, A. M., Hass, L. F., Jacobsen, D. D. and Boyer, P. D., 1961. J. Biol. Chem. 236, 2277–2283.

    Google Scholar 

  23. Hess, B. and Kutzbach, C., 1971. Hoppe-Seyler's Z. Physiol. Chem. 352, 453–458.

    Google Scholar 

  24. Ibsen, H. K. and Trippet, P., 1971. Life Sci. 10, 1021–1029.

    Google Scholar 

  25. Ibsen, H. K. and Trippet, P., 1972. Biochemistry 11, 4442–4450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felíu, J.E., Sols, A. Interconversion phenomena between two kinetic forms of class a pyruvate kinase from Ehrlich ascites tumor cells. Mol Cell Biochem 13, 31–44 (1976). https://doi.org/10.1007/BF01732393

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732393

Keywords

Navigation