Skip to main content
Log in

Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left- handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi, L., Cohen, M.D., Lahav, M. (1975). J.Chem.Soc.Chem.Comm. p. 471

  • Amariglio, A., Amariglio, H. (1971). In: Chemical evolution and the origin of life, R. Buvet, C. Ponnamperuma, eds., p. 63. Amsterdam: North-Holland

    Google Scholar 

  • Bender, P.E. (1969). Footnote 7 in Curtin, D.Y., Stein, A.R.: Can.J.Chem. 47, 3637

    Google Scholar 

  • Benghiat, V., Leiserowitz, L. (1972). J.Chem.Soc. Perkin II, 1763

    Google Scholar 

  • Bonner, W.A., Kavasmaneck, P.R., Martin, F.S., Flores, J.J. (1974). Sci. 186, 143

    Google Scholar 

  • Brown, C.J., Sadanaga, R. (1965). Acta Cryst. 18, 158

    Google Scholar 

  • Brown, T.L., Rogers, M.T. (1957). Acta Cryst. 10, 465

    Google Scholar 

  • Buerger, M.J., Barney, E., Hahn, T. (1957). Z. Krist. 108, 130

    Google Scholar 

  • Burton, F.G., Lohrmann, R., Orgel, L.E. (1974). J.Mol.Evol. 3, 141

    Google Scholar 

  • Bush, M.A., Truter, M.R. (1970). J.Chem.Soc.Chem.Comm. p.1439

  • Cairns-Smith, A.G., Ingram, P., Walker, G.L. (1972). J.Theoret.Biol. 35, 601

    Google Scholar 

  • Cairns-Smith, A.G. (1972). The life puzzle: On crystals and organisms and on the possibility of a crystal as an ancestor. University of Toronto Press

  • Cohen, M.D., Schmidt, G.M.J. (1964). J.Chem.Soc. 1996

  • Cohen, M.D., Green, B.S. (1973). Chem.in Britain 9, 490

    Google Scholar 

  • Cohen, M.D., Elgavi, A., Green, B.S., Ludmer, Z., Schmidt, G.M.J. (1972). J.Am.Chem.Soc. 94, 6776

    Google Scholar 

  • Collet, A., Brienne, M.J., Jacques, J. (1972). Bull.Soc.Chim.France, 127

  • Cromer, D.T., Larson, A.C. (1972). Acta Cryst. B28, 1052

    Google Scholar 

  • Elgavi, A. (1974). Ph.D. Thesis, Weizmann Institute of Science

  • Elgavi, A., Green, B.S., Schmidt, G.M.J. (1973). J.Am.Chem.Soc. 95, 2058

    Google Scholar 

  • Eliel, E. (1962). Stereochemistry of carbon compounds, p. 45–46. New York: McGraw-Hill

    Google Scholar 

  • Fetterly, L.C. (1964). Non-stoichiometric compounds, Chap.8, L. Mandelcorn, ed. New York: Academic Press

    Google Scholar 

  • Frank, J.K., Paul, I.C. (1973). J.Am.Chem.Soc. 95, 2324

    Google Scholar 

  • Fuller, W.D., Sanchez, R.A., Orgel, L.E. (1972). J.Mol.Evol. 1, 249

    Google Scholar 

  • Gati, E., Lahav, M., Laub, F., Leiserowitz, L. (to be published)

  • Green, B.S., Heller, L. (1974a). Sci. 185, 525

    Google Scholar 

  • Green, B.S., Heller, L. (1974b). Unpublished results

  • Green, B.S., Lahav, M., Schmidt, G.M.J. (1975). Mol.Cryst.Liquid Cryst. 29, 187

    Google Scholar 

  • Gupta, M.P., Prasud, S.M. (1971). Acta Cryst. B27, 1649

    Google Scholar 

  • Hadjoudis, E., Kariv, E., Schmidt, G.M.J. (1972). J.Chem.Soc.Perk.II, 1056

    Google Scholar 

  • Hagan, M. (1962). Clathrate inclusion compounds. N.Y.: Reinhold

    Google Scholar 

  • Harrison, W., Rettig, R., Trotter, J. (1972). J.Chem.Soc.Perkin II, 1036

    Google Scholar 

  • Harada, K. (1970). Naturwiss. 57, 114

    Google Scholar 

  • Havinga, E. (1954). Biochem.Biophys.Acta 13, 171

    Google Scholar 

  • Havinga, E. (1941). Chem.Weekblad 38, 642 (Chem.Abstr. 36, 5790, 1942)

    Google Scholar 

  • Hubbard, J.S., Hardy, J.P., Voecks, G.E., Golub, E.E.(1973). J.Mol.Evol. 2, 149

    Google Scholar 

  • Huber, K. (1940). Helv.Chim.Acta 23, 302

    Google Scholar 

  • Hung, J.D., Lahav, M., Luwisch, M., Schmidt, G.M.J. (1972). Isr.J.Chem. 10, 585

    Google Scholar 

  • Iitaka, I. (1960). Acta Cryst. 13, 35

    Google Scholar 

  • Kipping, F.S., Pope, W.J. (1898). Nature 59, 53

    Google Scholar 

  • Kipping, F.S., Pope, W.J. (1898). Trans.Chem.Soc. 73, 606

    Google Scholar 

  • Klug, A. (1950). Acta Cryst. 3, 165

    Google Scholar 

  • Lahav, M., Laub, F., Leiserowitz, L., Roytman, L. (1974), unpubl.results

  • Laub, F. (1975). M.Sc.Thesis, Weizmann Institute of Sciences

  • Landolt, H. (1986). Ber. 29, 2404

    Google Scholar 

  • Lemmon, R.M. (1973). Survey of progress in chemistry, A.F. Scott, ed., Vol.6, p. 47. New York: Academic Press

    Google Scholar 

  • Lin, C.T., Curtin, D.Y., Paul, I.C. (1974). J.Am.Chem.Soc. 96, 6199

    Google Scholar 

  • Miller, R.S., Ref. 41 in Paul, I.C., Curtin, D.Y. (1975). Sci. 187, 19

    Google Scholar 

  • Morawetz, H. (1966). Sci. 152, 705

    Google Scholar 

  • Morowitz, H.J. (1969). J.Theoret.Biol. 25, 491

    Google Scholar 

  • Newman, A.C.D., Powell, H.M. (1952). J.Chem.Soc. P. 3747

  • Newnham, R.E., Cross, L.E. (1974). Endeavour 33, 18

    Google Scholar 

  • Ostromisslensky, I. (1908). Chem.Ber. 41, 3035

    Google Scholar 

  • Paecht-Horowitz, M., Berger, J., Katchalsky, A. (1970). Nature 222, 636

    Google Scholar 

  • Penzien, K., Schmidt, G.M.J. (1969). Angew.Chem.Int.Edn. 8, 608

    Google Scholar 

  • Pincock, R.E., Perkins, R.R., Ma, A.S., Wilson, K.R. (1971). Sci. 174, 1018

    Google Scholar 

  • Pincock, R.E., Wilson, K.R. (1973). J.Chem.Ed. 50, 455

    Google Scholar 

  • Powell, H.M. (1964). Non-Stoichiometric compounds, L. Mandelcorn, ed., Chap.7. New York: Academic-Press

    Google Scholar 

  • Rabinovich, D., Shaked, Z. (1974). Acta Cryst. B30, 2829

    Google Scholar 

  • Rabinovich, D., Shaked, Z. (1975). Acta Cryst. B31, 819

    Google Scholar 

  • Rogacheva, E.D., Belyustin, A.V., Babushkin, Y.A., Bazhenova, N.N. (1971). Soviety Physics-Crystallography 16, 556

    Google Scholar 

  • Schmidt, G.M.J. (1971). Pure Appl.Chem. 27, 647

    Google Scholar 

  • Shahat, M. (1953). Proc.Pharm.Soc.Egypt 35, 57

    Google Scholar 

  • Smith, A.E. (1952). Acta Cryst. 5, 224

    Google Scholar 

  • Sperling, J., Elad, D. (1971). J.Am.Chem.Soc. 93, 967

    Google Scholar 

  • Tomita, K. (1971). Tetrahedron Letters 2587

  • Verlander, M.S., Orgel, L.E. (1974). J.Mol.Evol. 3, 115

    Google Scholar 

  • Wald, G. (1957). Ann.N.Y.Acad.Sci. 69, 352

    Google Scholar 

  • Wei, P.H. (1935). Z.Krist. 92A, 355

    Google Scholar 

  • Wudl, F., Lightner, D.A., Cram, D.J. (1967). J.Am.Chem.Soc. 89, 4099

    Google Scholar 

  • Zalkin, A., Templeton, D.H. (1953). Acta Cryst. 6, 106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, B.S., Lahav, M. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials. J Mol Evol 6, 99–115 (1975). https://doi.org/10.1007/BF01732291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732291

Key words

Navigation