Skip to main content
Log in

Phosphate transport in rat liver mitochondria

Kinetics, inhibitor sensitivity, energy requirements, and labelled components

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Experiments were carried out to define the kinetic parameters of the major phosphate transport processes of rat liver mitochondria, and to obtain information about the molecular properties of these systems.

Using an ‘inhibitor-stop’ assay and a rapid sampling technique it was shown that under conditions where phosphate transport is the rate limiting process, the Km and Vmax ofp-mercuri-benzoate (p-MB)-sensitive transport are 1.84mm and 229 nmoles × min−1 × mg−1, respectively at 0°. Thep-MB-sensitive phosphate transport process could be separated into two kinetic components, one which catalyzed a Pi-OH exchange which was shown to be specifically inhibited by NEM, and one which catalyzed a Pi-dicarboxylate exchange which was shown to be specifically inhibited byn-butyl malonate. The kinetic parameters of these two activities at 0° are: for NEM-sensitive Pi-OH exchange, Km = 1.60mm and Vmax = 205 nmole × min × mg−1; and forn-butyl malonate-sensitive Pi-dicarboxylate exchange, Km = 1.76mm and Vmax 14.9 nmole × min−1 × mg−1. The apparent affinity of these two activities cannot be distinguished within experimental error.

By protecting the phosphate transport processes withp-MB and labelling sulfhydryl groups unassociated with Pi transport with cold NEM, it could be shown that upon addition of dithiothreitol (to removep-MB), followed by radioactive NEM, five distinct polypeptide components of the mitochondrial inner membrane are labelled. The major labelled component has a molecular weight of 32,000 and contains 40% of the bound radioactivity or about 160 pmoles per mg inner membrane protein.

Correlation of binding of labelled NEM by inner membrane proteins with inhibition of phosphate transport suggests that the maximum concentration of the NEM-sensitive component of the phosphate transport system is 60 pmoles/mg mitochondrial protein. This value, when combined with the Vmax of NEM-sensitive transport yields an approximate minimum turnover for this process of 3500 min−1 at 0°.

These results define the kinetic properties of the two major phosphate transport processes in rat liver mitochondria, and provide information about the candidate proteins involved in the Pi-OH exchange. In addition they indicate that the Pi-OH transport system has an unusually high catalytic activity, about 20-fold greater than other mitochondrial processes such as adenine nucleotide transport or succinate oxidation.

A model consistent with data presented here is proposed which consists of separate transport systems for catalyzing the Pi-OH exchange and the Pi-dicarboxylate exchange. The two systems are envisioned to contain a similar or identical component, containing a Pi binding site and an SH group essential for transport activity which would react withp-MB but not NEM. In addition, specific components are envisioned which are responsible for counter-transport of either OH or dicarboxylate ions and interaction with either NEM orn-butyl malonate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chappell, J. B., Brit. Med. Bull. 24, 150–157 (1968).

    Google Scholar 

  2. Tyler, D. D., Biochem. J. 111, 665–678 (1969).

    Google Scholar 

  3. Fonyo, A., and Bessman, S. P., Bioch. Med. 2, 145–163 (1968).

    Google Scholar 

  4. Papa, S., Lofrumento, N. E., Quagliariello, E., Meijer, A. J., and Tager, J. M., J. Bioenergetics 1, 287–307 (1970).

    Google Scholar 

  5. Hoek, J. B., Lofrumento, N. E., Meyer, A. J., and Tager, J. M., Biochim. Biophys. Acta 226, 297–308 (1971).

    Google Scholar 

  6. McGivan, J. D., and Klingenberg, M., Eur. J. Biochem. 20, 392–399 (1971).

    Google Scholar 

  7. Palmieri, F., Quagliariello, E., and Klingenberg, M., Eur. J. Biochem. 17, 230–238 (1970).

    Google Scholar 

  8. Chappell, J. B., and Crofts, A. R., in Regulation of Metabolic Processes in Mitochondria (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., eds) Vol. 7, pp. 293–314, BBA Library, American Elsevier Publishing Co., New York (1966).

    Google Scholar 

  9. Chappell, J. B., and Haarhoff, K. N., in Biochemistry of Mitochondria (Slater, E. C., Kaniuga, Z., and Wojtczak, L., eds) pp. 75–92, Academic Press, New York (1966).

    Google Scholar 

  10. Coty, W. A., and Pedersen, P. L., Fed. Proc. 33, 1257 (1974).

    Google Scholar 

  11. Coty, W. A., and Pedersen, P. L., J. Biol. Chem. 249, 2593–2598 (1974).

    Google Scholar 

  12. Addanki, S., Cahill, F. D., Sotos, J. F., J. Biol. Chem. 243, 2337–2348 (1968).

    Google Scholar 

  13. Waddell, W. J., and Butler, T. C., J. Clin. Invest. 38, 720–729 (1959).

    Google Scholar 

  14. Palmieri, F., Prezioso, G., Quagliariello, E., and Klingenberg, M. Eur. J. Biochem. 22, 66–74 (1971).

    Google Scholar 

  15. Robinson, B. H., and Williams, G. R., Biochim. Biophys. Acta 216, 63–70 (1970).

    Google Scholar 

  16. Johnson, R. N., and Chappell, J. B., Biochem. J. 134, 769–774 (1973).

    Google Scholar 

  17. Meijer, A. J., and Tager, J. M., Biochim. Biophys. Acta 189, 136–139 (1969).

    Google Scholar 

  18. Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., J. Membrane Biol. 7, 391–401 (1972).

    Google Scholar 

  19. Meijer, A. J., Groot, G. S. P., and Tager, J. M., Fed. Eur. Biochem. Soc. Lett. 8, 41–44 (1970).

    Google Scholar 

  20. Johnson, R. N., and Chappell, J. B., Biochem. J. 116, 37P (1970).

  21. Greville, G. D., in Current Topics in Bioenergetics (Sanadi, D. R., ed.) Vol. 3, pp. 1–78, Academic Press, New York (1969).

    Google Scholar 

  22. McGivan, J. D., Grebe, K., and Klingenberg, M., Biochem. Biophys. Res. Commun. 45, 1533–1541 (1971).

    Google Scholar 

  23. Mitchell, P., Bioenergetics 3, 5–24 (1972).

    Google Scholar 

  24. Klingenberg, M., and Pfaff, E., in Regulation of Metabolic Processes in Mitochondria (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., eds) Vol. 7, p. 180, BBA Library, American Elsevier Publishing Co., New York (1966).

    Google Scholar 

  25. Palmieri, F., Stipani, I., Quagliariello, E., and Klingenberg, M., Eur. J. Biochem. 26, 587–594 (1972).

    Google Scholar 

  26. Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., Eur. J. Biochem. 15, 263–272 (1970).

    Google Scholar 

  27. Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., J. Biol. Chem. 246, 5280–5286 (1971).

    Google Scholar 

  28. Papa, S., Lofrumento, N. E., Kanduc, D., Paradies, G., and Quagliariello, E., Eur. J. Biochem. 22, 134–143 (1971).

    Google Scholar 

  29. Klingenberg, M., Fed. Eur. Biochem. Soc. Lett. 6, 145–154 (1970).

    Google Scholar 

  30. Meyer, A. J., Papa, S., Paradies, G., Zanghi, M. A., Tager, J. M., and Quagliariello, E., Biochim. Biophys. Acta 197, 97–100 (1970).

    Google Scholar 

  31. Papa, S., D'Aloya, R., Meijer, A. J., Tager, J. M., and Quagliariello, E., in The Energy Level and Metabolic Control in Mitochondria (Papa, S., Tager, J. M., Quagliariello, E., and Slater, E. C., eds) p. 159, Adriatica Editrice, Bari (1969).

    Google Scholar 

  32. DeHaan, E. J., and Tager, J. M., Biochim. Biophys. Acta 153, 98–112 (1968).

    Google Scholar 

  33. Schnaitman, C. A., and Greenawalt, J. W., J. Cell Biology 38, 158–175 (1968).

    Google Scholar 

  34. Chan, T. L., Greenawalt, J. W., and Pedersen, P. L., J. Cell Biology 45, 291–305 (1970).

    Google Scholar 

  35. Coty, William A., Ph.D. Dissertation, Johns Hopkins University (Ann Arbor, Michigan: University Microfilms). (1974).

  36. Stock, J., and Roseman, S., Biochem. Biophys. Res. Commun. 44, 132–138 (1971).

    Google Scholar 

  37. Williamson, J. R., and Corkey, B., in Methods in Enzymology (Lowenstein, J. M., ed.) Vol. XIII, pp. 434–513, Academic Press, New York (1969).

    Google Scholar 

  38. Gomori, G. J., J. Lab. Clin. Med. 27, 955–960 (1962).

    Google Scholar 

  39. Boyer, P. D., J. Amer. Chem. Soc. 76, 4331–4337 (1954).

    Google Scholar 

  40. Riordan, J. F., and Vallee, B. L., in Methods in Enzymology (Hirs, C. H. W., ed.) Vol. XI, p. 541–548, Academic Press, New York (1967).

    Google Scholar 

  41. Catterall, W. A. and Pedersen, P. L., J. Biol. Chem. 246, 4987–4994 (1971).

    Google Scholar 

  42. Catterall, W. A., Coty, W. A., and Pedersen, P. L., J. Biol. Chem. 248, 7427–7431 (1973).

    Google Scholar 

  43. Basch, R. S., Analytical Biochem. 26, 185–188 (1968).

    Google Scholar 

  44. Jacobs, E. E., Jacobs, M., Sanadi, D. R., and Bradley, L. B., J. Biol. Chem. 223, 147–156 (1956).

    Google Scholar 

  45. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem. 246, 265–275 (1951).

    Google Scholar 

  46. Pfaff, E., and Klingenberg, M., Eur. J. Biochem. 6, 66–79 (1968).

    Google Scholar 

  47. Pfaff, E., Heldt, H. W., and Klingenberg, M. Eur. J. Biochem. 10, 484–493 (1969).

    Google Scholar 

  48. Kotyk, A., and Janáček, K., Cell Membrane Transport, pp. 91–182 and 233-246, Plenum Press, New York (1970).

    Google Scholar 

  49. Kemp, A., Jr., Groot, G. S. P., and Reitsma, H. J., Biochim. Biophys. Acta 180, 28–34 (1969).

    Google Scholar 

  50. Coty, W. A. and Pedersen, P. L., J. Biol. Chem., In Press, December (1974).

  51. Jones, T. H. D., and Kennedy, E. P., J. Biol. Chem. 244, 5981–5987 (1969).

    Google Scholar 

  52. Debise, R., and Durand, R., Biochimie 56, 161–170 (1974).

    Google Scholar 

  53. Pedersen, P. L., and Coty, W. A., J. Biol. Chem. 247, 3107–3113 (1972).

    Google Scholar 

  54. Rossi, C. S., and Lehninger, A. L., Biochemische Zeitschrift 338, 698–713 (1963).

    Google Scholar 

  55. Lehninger, A. L., Proc. Nat. Acad. Sci., U.S.A., 71, 1520–1524 (1974).

    Google Scholar 

  56. Lofrumento, N. E., Zanotti, F. and Papa, S., Fed. Eur. Biochem. Soc. Lett. 48, 188–191 (1974).

    Google Scholar 

  57. Pedersen, P. L. and Coty, W. A., Fed. Proc. 31, 431 (1972).

    Google Scholar 

  58. Heldt, H. W., in Inhibitors-Tools in Cell Research (Bücher, T., and Sies, H., eds) pp. 301–317, Springer-Verlag, New York (1969).

    Google Scholar 

  59. Vidaver, G. A., J. Theoret. Biol. 10, 301–306 (1966).

    Google Scholar 

  60. Davis, R. P., in Biological Membranes (Dowben, R. M., ed.) pp. 109–156, Little, Brown and Co., Boston (1969).

    Google Scholar 

  61. Hoare, D. G., in Biomembranes (Kreuzer, F., and Slegers, J. F. G., eds) Vol. 3, pp. 107–116, Plenum Press, New York (1972).

    Google Scholar 

  62. Lofrumento, N. E., Papa, S., Zanotti, F. and Quagliariello, E., Fed. Eur. Biochem. Soc. Lett. 36, 273–276 (1973).

    Google Scholar 

  63. Papa, S., Kanduc, D. and Lofrumento, N. E., Fed. Eur. Biochem. Soc. Lett. 36, 9–11 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coty, W.A., Pedersen, P.L. Phosphate transport in rat liver mitochondria. Mol Cell Biochem 9, 109–124 (1975). https://doi.org/10.1007/BF01732202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732202

Keywords

Navigation