Skip to main content
Log in

Glycolytic metabolism in cultured cells of the nervous system

II. Regulation of pyruvate and lactate metabolism in the C-6 glioma cell line

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Pyruvate and lactate efflux from C-6 glioma cells has been found to be regulated by both the medium glucose concentration and the medium concentration of the two acids. Each moves down a concentration gradient until the extracellular level is in equilibrium with the intracellular. Long-term growth studies demonstrated that the cells preferentially utilize glucose but that once it is depleted, they will take up first pyruvate, followed by lactate, for further metabolism. Changes in the intracellular levels of the two metabolites correspond to those seen in the medium. The rate of glycogen breakdown parallels that of medium glucose utilization. Preliminary results with the C-1300 neuroblastoma cells showed pyruvate and lactate efflux rates comparable to those of the glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lust, W. D., Schwartz, J. P. and Passonneau, J. V., Molecular and Cellular Biochem. 8, 169–176 (1975).

    Google Scholar 

  2. Mowbray, J. and Ottaway, J. H. Eur. J. Biochem. 36, 362–368 (1973).

    Google Scholar 

  3. Mowbray, J. and Ottaway, J. H. Eur. J. Biochem. 36, 369–379 (1973).

    Google Scholar 

  4. Henderson, A. H., Craig, R. J., Gorlin, R. and Sonnenblick, E. H. Amer. J. Physiol. 217, 1752–1756 (1969).

    Google Scholar 

  5. Wimhurst, J. M. and Manchester, K. L. Biochem. J. 134, 143–156 (1973).

    Google Scholar 

  6. Drewes, L. R. and Gilboe, D. D. J. Biol. Chem. 248, 2489–2496 (1973).

    Google Scholar 

  7. Opie, L. H. and Mansford, K. R. L. Eur. J. Clin. Invest. 1, 295–306 (1971).

    Google Scholar 

  8. Schwartz, J. P., Lust, W. D., Lauderdale, V. R. and Passonneau, J. V. Trans. Amer. Soc. Neurochem. 5, 87 (1974).

    Google Scholar 

  9. Lowry, O. H. and Passonneau, J. V. A Flexible System of Enzymatic Analysis, Academic Press, New York and London (1972).

    Google Scholar 

  10. Watts, D. J. and Randle, P. J. Biochem. J. 104, 51P (1967).

  11. Weinhouse, S. Adv. Canc. Res. 3, 269–325 (1955).

    Google Scholar 

  12. Ruderman, N. B., Ross, P. S., Berger, M. and Goodman, M. N. Biochem. J. 138, 1–10 (1974).

    Google Scholar 

  13. Hawkins, R. A., Williamson, D. H. and Krebs, H. A. Biochem. J. 122, 13–18 (1971).

    Google Scholar 

  14. Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. and Cahill, G. F. J. Clin. Invest. 46, 1589–1595 (1967).

    Google Scholar 

  15. Golgi, C. Opera Omnia 1, 40 (1903).

    Google Scholar 

  16. Opler, L. A., and Makman, M. H. Biochem. and Biophys. Res. Commun. 46, 1140–1145 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J.P., Lust, W.D., Lauderdale, V.R. et al. Glycolytic metabolism in cultured cells of the nervous system. Mol Cell Biochem 9, 67–72 (1975). https://doi.org/10.1007/BF01732197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732197

Keywords

Navigation