Advertisement

Molecular and Cellular Biochemistry

, Volume 7, Issue 1, pp 19–31 | Cite as

Aspects of long-chain acyl-CoA metabolism

  • A. Van Tol
Review and General Articles a. review articles

Summary

  1. 1.

    Long-chain acid: CoA ligase (AMP-forming) (trivial name acyl-CoA synthetase; EC 6.2.1.3) is located at the membranes of the endoplasmic reticulum and the outer membrane of the mitochondria. The latter membrane has by far the highest specific activity.

     
  2. 2.

    GTP-dependent synthesis of acyl-CoA has a very low activity in liver mitochondria (about 5% of the activity measured with ATP). CTP, ITP, UTP and GTP may all provide energy for fatty acid activation in sonicated mitochondria by formation of ATP from endogenous ADP and AMP.

     
  3. 3.

    In rat liver palmitoyl-CoA: L-carnitine O-palmitoyltransferase (trivial name carnitine palmitoyltransferase; EC 2.3.1.21) is located at the microsomal membranes and in the inner membrane of the mitochondria. Its activity is increased, in both membranes, during fasting and in thyroxine-treated rats. The extramitochondrial carnitine plamitoyltransferase may capture part of the acyl-CoA formed at the endoplasmic reticulum as acyl-carnitine, especially during fasting and other metabolic conditions of high fatty acid turnover. This transport form of activated fatty acid can penetrate the inner mitochondrial membrane (the acyl-CoA barrier) where it can be reconverted to acyl-CoA, providing the substrate for β-oxidation in the inner membrane-matrix compartment. The small part of the mitochondrial carnitine palmitoyltransferase, described to be present at the external surface of the mitochondrial inner membrane, may have the same function in the transport of acyl-CoA formed at the mitochondrial outer membrane.

     
  4. 4.

    Isolated rat liver mitochondria can oxidize high concentrations of palmitate or oleate in the absence of carnitine. In this case the fatty acids are activated in the inner membrane-matrix compartment of the mitochondria, probably by a medium-chain acyl-CoA synthetase with wide substrate specificity. Because this enzyme is less active in heart and absent in skeletal muscle, these tissues oxidize long-chain fatty acids in an obligatory carnitine-dependent fashion. Also the liver oxidizes long-chain fatty acids in a carnitine-dependent way if lower fatty acid concentrations are used. In this tissue carnitine stimulates specifically the partial oxidation of fatty acids to β-hydroxybutyrate and acetoacetate.

     
  5. 5.

    The activities of acyl-CoA: sn-glycerol-3-phosphate O-acyltransferase (trivial name glycero-phosphate acyltransferase; EC 2.3.1.15) and carnitine palmitoyltransferase change in opposite directions during fasting. These activity changes, together with the measured kinetic properties of the enzymes in mitochondria and microsomes, allow a switch (relatively) from lipid synthesis to ketogenesis during fasting. This switch may occur at the level of long-chain acyl-CoA both in the endoplasmic reticulum and in the mitochondria.

     

Keywords

Carnitine Carnitine Palmitoyltransferase Wide Substrate Specificity Fatty Acid Activation Fatty Acid Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fritz, I. B., Amer. J. Physiol. 190, 449–452 (1957).Google Scholar
  2. 2.
    Fritz, I. B. and McEwen, B., Science 129, 334–335 (1959).Google Scholar
  3. 3.
    Bremer, J., J. Biol. Chem. 237, 3628–3632 (1962).Google Scholar
  4. 4.
    Bremer, J., J. Biol. Chem. 238, 2774–2779 (1963).Google Scholar
  5. 5.
    Fritz, I. B. and Yue, K. T. N., J. Lipid Res. 4, 279–288 (1963).Google Scholar
  6. 6.
    Kornberg, A. and Pricer Jr., W. E., J. Biol. Chem. 204, 329–343 (1953).Google Scholar
  7. 7.
    Van den Bergh, S. G., Biochim. Biophys. Acta 98, 442–444 (1965).Google Scholar
  8. 8.
    Yates, D. W., Shepherd, D. and Garland, P. B., Nature 209, 1213–1215 (1966).Google Scholar
  9. 9.
    Bode, C. and Klingenberg, M., Biochim. Biophys. Acta 84, 93–95 (1964).Google Scholar
  10. 10.
    Makinen, M. W. and Lee, C. P., Arch. Biochem. Biophys. 126, 75–82 (1968).Google Scholar
  11. 11.
    Rossi, C. R. and Gibson, D. M., J. Biol. Chem. 239, 1694–1699 (1964).Google Scholar
  12. 12.
    Galzigna, L., Rossi, C. R., Sartorelli, L. and Gibson, D. M., J. Biol. Chem. 242, 2111–2115 (1967).Google Scholar
  13. 13.
    Rossi, C. R., Galzigna, L., Alexandre, A. and Gibson, D. M., J. Biol. Chem. 242, 2102–2110 (1967).Google Scholar
  14. 14.
    Norum, K. R. and Bremer, J., J. Biol. Chem. 242, 407–411 (1967).Google Scholar
  15. 15.
    Van Tol, A. and Hülsmann, W. C., Biochim. Biophys. Acta 189, 342–353 (1969).Google Scholar
  16. 16.
    Van Tol, A. and Hülsmann, W. C., Biochim. Biophys. Acta 223, 416–428 (1970).Google Scholar
  17. 17.
    Van Tol, A., Biochim. Biophys. Acta 223, 429–432 (1970).Google Scholar
  18. 18.
    Farstad, M., Bremer, J. and Norum, K. R., Biochim. Biophys. Acta 132, 492–502 (1967).Google Scholar
  19. 19.
    Norum, K. R., Biochim. Biophys. Acta 89, 95–108 (1964).Google Scholar
  20. 20.
    Van Tol, A., Biochim. Biophys. Acta 357, 14–23 (1974).Google Scholar
  21. 21.
    Deitrich, R. A. and Erwin, V. G., Anal. Biochem. 30, 395–402 (1969).Google Scholar
  22. 22.
    Sottocasa, G. L., Kuylenstierna, B., Ernster, L. and Bergstrand, A., J. Cell Biol. 32, 415–438 (1967).Google Scholar
  23. 23.
    De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. and Appelmans, F., Biochem. J. 60, 604–617 (1955).Google Scholar
  24. 24.
    Slater, E. C. and Bonner, W. D., Biochem. J. 52, 185–196 (1952).Google Scholar
  25. 25.
    Rossi, C. R., Alexandre, A., Galzigna, L., Sartorelli, L. and Gibson, D. M., J. Biol. Chem. 245, 3110–3114 (1970).Google Scholar
  26. 26.
    Van Tol, A., De Jong, J. W. and Hülsmann, W. C., Biochim. Biophys. Acta 176, 414–416 (1969).Google Scholar
  27. 27.
    Batenburg, J. J. and Van den Bergh, S. G., Biochim. Biophys. Acta 316, 136–142 (1973).Google Scholar
  28. 28.
    Pande, S. V. and Mead, J. F., Biochim. Biophys. Acta 152, 636–638 (1968).Google Scholar
  29. 29.
    Aas, M., Biochim. Biophys. Acta 231, 32–47 (1971).Google Scholar
  30. 30.
    Lennarz, W. J., Biochim. Biophys. Acta 73, 335–337 (1963).Google Scholar
  31. 31.
    Overath, P., Pauli, G. and Schairer, H. U., Europ. J. Biochem. 7, 559–574 (1969).Google Scholar
  32. 32.
    Weeks, G., Shapiro, M., Burns, R. O. and Wakil, S. J., J. Bacteriol. 97, 827–836 (1969).Google Scholar
  33. 33.
    Duvnjak, Z., Lebault, J. M., Roche, B. and Azoulay, E., Biochim. Biophys. Acta 202, 447–459 (1970).Google Scholar
  34. 34.
    Galliard, T. and Stumpf, P. K., Biochem. Prep. 12, 66–68 (1968).Google Scholar
  35. 35.
    Cooper, T. G. and Beevers, H., J. Biol. Chem. 244, 3514–3520 (1969).Google Scholar
  36. 36.
    Pande, S. V. and Mead, J. F., J. Biol. Chem. 243, 352–361 (1968).Google Scholar
  37. 37.
    De Jong, J. W. and Hülsmann, W. C., Biochim. Biophys. Acta 197, 127–135 (1970).Google Scholar
  38. 38.
    Lippel, K., Robinson, J. and Trams, E. G., Biochim. Biophys. Acta 206, 173–177 (1970).Google Scholar
  39. 39.
    Norum, K. R., Farstad, M. and Bremer, J., Biochem. Biophys. Res. Commun. 24, 797–804 (1966).Google Scholar
  40. 40.
    Van den Bergh, S. G., Modder, C. P., Souveryn, J. H. M. and Pierrot, H. C. J. M. in Mitochondria Structure and Function (Ernster, L. and Drahota, Z., Eds.) pp. 137–144, Acad. Press London (1969).Google Scholar
  41. 41.
    De Jong, J. W. and Hülsmann, W. C., Biochim. Biophys. Acta 210, 499–501 (1970).Google Scholar
  42. 42.
    De Jong, J. W., Biochim. Biophys. Acta 245, 288–298 (1971).Google Scholar
  43. 43.
    Groot, P. H. E. and Hülsmann, W. C., Biochim. Biophys. Acta 316, 124–135 (1973).Google Scholar
  44. 44.
    Scholte, H. R., Biochim. Biophys. Acta 330, 283–293 (1973).Google Scholar
  45. 45.
    Groot, P. H. E., Van Loon, C. M. I. and Hülsmann, W. C., Biochim. Biophys. Acta 337, 1–12 (1974).Google Scholar
  46. 46.
    Pande, S. V. and Blanchaer, M. C., Biochim. Biophys. Acta 202, 43–48 (1970).Google Scholar
  47. 47.
    Jacobson, B. E., Blanchaer, M. and Wrogemann, K., Can. J. Biochem. 48, 1037–1042 (1970).Google Scholar
  48. 48.
    Peter, J. B. and Lee, L. D., Biochem. Biophys. Res. Commun. 29, 430–436 (1967).Google Scholar
  49. 49.
    Fritz, I. B. and Marquis, N. R., Proc. Nat. Acad. Sc. U.S.A. 54, 1226–1233 (1965).Google Scholar
  50. 50.
    Farstad, M., Biochim. Biophys. Acta 146, 272–283 (1967).Google Scholar
  51. 51.
    Aas, M., Biochim. Biophys. Acta 202, 250–258 (1970).Google Scholar
  52. 52.
    Lippel, K., Biochim. Biophys. Acta 239, 384–392 (1971).Google Scholar
  53. 53.
    Schnaitman, C. Erwin, V. G. and Greenawalt, J. W., J. Cell Biol. 32, 719–735 (1967).Google Scholar
  54. 54.
    Brunner, G. and Bygrave, F. L., Europ. J. Biochem. 8, 530–534 (1969).Google Scholar
  55. 55.
    Van Tol, A., Biochim. Biophys. Acta 219, 227–230 (1970).Google Scholar
  56. 56.
    Bar-Tana, J., Rose, G. and Shapiro, B., Biochem. J. 122, 353–362 (1971).Google Scholar
  57. 57.
    Marcel, Y. L. and Suzue, G., J. Biol. Chem. 247, 4433–4436 (1972).Google Scholar
  58. 58.
    Hoppel, C. L. and Tomec, R. J., J. Biol. Chem. 247, 832–844 (1972).Google Scholar
  59. 59.
    Markwell, M. A. K., McGroarty, E. J., Bieber, L. L. and Tolbert, N. E., J. Biol. Chem. 248, 3426–3432 (1973).Google Scholar
  60. 60.
    Van Tol, A., Hepatic Fatty Acid Oxidation, Ph.D. Thesis, p. 26, Bronder Offset, Rotterdam (1971).Google Scholar
  61. 61.
    Daae, L. N. W. and Aas, M., Atherosclerosis 17, 389–400 (1973).Google Scholar
  62. 62.
    Platt, D. S. and Thorp, J. M., Biochem. Pharmacology 15, 915–925 (1966).Google Scholar
  63. 63.
    Westerfeld, W. W., Riechert, D. A. and Ruegamer, W. R., Biochem. Pharmacology 17, 1003–1016 (1968).Google Scholar
  64. 64.
    Yates, D. W. and Garland, P. B., Biochem. Biophys. Res. Commun. 23, 460–465 (1966).Google Scholar
  65. 65.
    Garland, P. B. and Yates, D. W., in Mitochondrial Structure and Compartmentation (Quagliariello, E., Papa, S., Slater, E. C. and Tager, J. M., Eds.) Adriatica Editrice, Bari, pp. 385–399 (1967).Google Scholar
  66. 66.
    West, D. W., Chase, J. F. A. and Tubbs, P. K., Biochem. Biophys. Res. Commun. 42, 912–918 (1971).Google Scholar
  67. 67.
    Yates, D. W. and Garland, P. B., Biochem. J. 119, 547–552 (1970).Google Scholar
  68. 68.
    Kopec, B. and Fritz, I. B., J. Biol. Chem. 248, 4069–4074 (1973).Google Scholar
  69. 69.
    Brosnan, J. T., Kopec, B. and Fritz, I. B., J. Biol. Chem. 248, 4075–4082 (1973).Google Scholar
  70. 70.
    Bieber, L. L., Abraham, T. and Helmrath, T., Anal. Biochem. 50, 509–518 (1972).Google Scholar
  71. 71.
    Mahadevan, S. and Sauer, F., J. Biol. Chem. 244, 4448–4453 (1969).Google Scholar
  72. 72.
    Fritz, I. B., Acta Physiol. Scand. 34, 367–385 (1955).Google Scholar
  73. 73.
    Fritz, I. B., Amer. J. Physiol. 197, 297–304 (1959).Google Scholar
  74. 74.
    Bremer, J. and Norum, K. R., Europ. J. Biochem. 1, 427–433 (1967).Google Scholar
  75. 75.
    Pande, S. V. and Blanchaer, M. C., J. Biol. Chem. 246, 402–411 (1971).Google Scholar
  76. 76.
    Vaartjes, W. J., Kemp, A., Souveryn, J. H. M. and Van den Bergh, S. G., FEBS Letters 23, 303–308 (1972).Google Scholar
  77. 77.
    Lerner, E., Shug, A. L., Elson, C. and Shrago, E., J. Biol. Chem. 247, 1513–1519 (1972).Google Scholar
  78. 78.
    Harris, R. A., Farmer, B. and Ozawa, T., Arch. Biochem. Biophys. 150, 199–209 (1972).Google Scholar
  79. 79.
    Skrede, S. and Bremer, J., Europ. J. Biochem. 14, 465–472 (1970).Google Scholar
  80. 80.
    Williamson, J. R., Browning, E. T., Scholz, R., Kreisberg R. A. and Fritz, I. B., Diabetes 17, 194–208 (1968).Google Scholar
  81. 81.
    McGarry, J. D., Meier, J. M. and Foster, D. W., J. Biol. Chem. 248, 270–278 (1973).Google Scholar
  82. 82.
    Williamson, J. R., Browning, E. T., Thurman, R. G. and Scholz, R., J. Biol. Chem. 244, 5055–5064 (1969).Google Scholar
  83. 83.
    Beattie, D. S., Biochem. Biophys. Res. Commun. 30, 57–62 (1968).Google Scholar
  84. 84.
    Daae, L. N. W. and Bremer, J., Biochim. Biophys. Acta 210, 92–104 (1970).Google Scholar
  85. 85.
    Aas, M. and Daae, L. N. W., Biochim. Biophys. Acta 239, 208–216 (1971).Google Scholar
  86. 86.
    Ontko, J., J. Biol. Chem. 247, 1788–1800 (1972).Google Scholar
  87. 87.
    Bortz, W. M. and Lynen, F., Biochem. Z. 339, 77–83 (1963).Google Scholar
  88. 88.
    Pearson, D. J. and Tubbs, P. K., Biochem. J. 105, 953–963 (1967).Google Scholar
  89. 89.
    Aydin, A. and Sokal, J. E., Amer. J. Physiol. 205, 667–672 (1963).Google Scholar
  90. 90.
    Cahill Jr., G. F., Herrera, M. G., Morgan, A. F., Soeldner, S. J., Steinke, J., Levy, P. L., Reichard, G. A. and Kipnis, D. M., J. Clin. Invest. 45, 1751–1769 (1966).Google Scholar
  91. 91.
    Exton, J. H., Corbin, J. G. and Harper, S. C., J. Biol. Chem. 247, 4996–5003 (1972).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1975

Authors and Affiliations

  • A. Van Tol
    • 1
  1. 1.Department of Biochemistry I, Faculty of MedicineErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations