Skip to main content
Log in

Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A method for estimating the evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences is presented. This method is applied to genes of øX174 and G4 genomes, histone genes andβ-globin genes, for which homologous nucleotide sequences are available for comparison to be made. It is shown that the rates of synonymous substitutions are quite uniform among the non-overlapping genes of øX174 and G4 and among histone genes H4, H2B, H3 and H2A. A comparison between øX174 and G4 reveals that, in the overlapping segments of the A-gene, the rate of synonymous substitution is reduced more significantly than the rate of amino acid substitution relative to the corresponding rate in the nonoverlapping segment. It is also suggested that, in the coding regions surrounding the splicing points of intervening sequences ofβ-globin genes, there exist rigid secondary structures. It is in only these regions that theβ-globin genes show the slowing down of evolutionary rates of both synonymous and amino acid substitutions in the primate line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, suppl. 3, Na tional Biomedical Research Foundation, Maryland

    Google Scholar 

  • Dickerson RE (1971) J Mol Evol 1:26–45

    Google Scholar 

  • Efstratiadis A, Kafatos FC, Maniatis T (1977) Cell 10:571–585

    Google Scholar 

  • Fiers W, Contreras R, Duerinck F, Haegeman G, Merregaert J, Min-Jou W, Raeymaekers A, Volckaert G, Ysebaert M, Van de Kerckhove J, Nolf F, Van Mantagu M (1975) Nature 256:273–278

    Google Scholar 

  • Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min-Jou W, Molemans F, Raeymaekers A, Van den Berghu A, Volckaert G, Ysebaert M (1976) Nature 260:500–507

    Google Scholar 

  • Fitch WM, Langley CH (1976) Federation Proceedings 35:2092–2097

    Google Scholar 

  • Godson GN, Barrell BG, Staden R, Fiddes JC (1978) Nature 276:236–247

    Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Nature 253:603–608

    Google Scholar 

  • Goodman M, Moore GW, Barnabas J, Matsuda G (1974) J Mol Evol 3:1–48

    Google Scholar 

  • Grantham R (1978) FEBS Lett 95:1–11

    Google Scholar 

  • Grunstein M, Grunstein JE (1978) Cold Spring Harbor Symp Quant Biol 42:1083–1092

    Google Scholar 

  • Grunstein M, Schedl P, Kedes L (1976) J Mol Biol 104:351–369

    Google Scholar 

  • Heindell HC, Liu A, Paddock GV, Studnicka GM, Salser WA (1978) Cell 15:43–54

    Google Scholar 

  • Kafatos FC, Efstratiadis A, Forget BG, Weissman SM (1977) Proc Nat Acad Sci USA 74:5618–5622

    Google Scholar 

  • Kimura M (1977) Nature 267:275–276

    Google Scholar 

  • Kimura M, Ohta T (1974) Proc Nat Acad Sci USA 71:2848–2852

    Google Scholar 

  • Konkel DA, Tilghman SM, Leder P (1978) Cell 15:1125–1132

    Google Scholar 

  • Marrotta CA, Wilson JT, Forget BG, Weissman SM (1977) J Biol Chem 252:5040–5053

    Google Scholar 

  • Min-Jou W, Haegeman G, Ysebaert M, Fiers W (1972) Nature 237:82–88

    Google Scholar 

  • Min-Jou W, Fiers W (1976) J Mol Biol 106:1047–1060

    Google Scholar 

  • Miyata T, Yasunaga T (1978) Nature 272:532–535

    Google Scholar 

  • Miyata T, Miyazawa S, Yasunaga T (1979) J Mol Evol 12:219–236

    Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nature 278:423–427

    Google Scholar 

  • Ohta T, Kimura M (1971) J Mol Evol 1:18–25

    Google Scholar 

  • Roberts JL, Seeburg PH, Shine J, Herbert E, Baxter JD, Goodman HM (1979) Proc Nat Acad Sci USA 76:2153–2157

    Google Scholar 

  • Romero-Herrera AE, Lehman H, Joysey KA, Friday AE (1973) Nature 246:389–395

    Google Scholar 

  • Salser W (1978) Cold Spring Harbor Symp Quant Biol 42:985–1002

    Google Scholar 

  • Salser W, Isaacson JS (1976) Prog Nucleic Acid Res 19:205–220

    Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison III CA, Slocombe PMS, Smith M (1977) Nature 265:689–695

    Google Scholar 

  • Sanger F, Coulson AR, Friedmann T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison III CA, Slocombe PM, Smith M (1978) J Mol Biol 125:225–246

    Google Scholar 

  • Schaffner W, Knuz G, Daetwyler H, Telford J, Smith HO, Birnstiel ML (1978) Cell 14:655–671

    Google Scholar 

  • Sures I, Lowry J, Kedes LH (1978) Cell 15:1033–1044

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Ann Rev Biochem 46:573–639

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolving genes and proteins. Bryson V, Vogel HJ (eds) Academic Press, New York p 97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, T., Yasunaga, T. Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16, 23–36 (1980). https://doi.org/10.1007/BF01732067

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732067

Key words

Navigation