Molecular and Cellular Biochemistry

, Volume 16, Issue 2–3, pp 187–192 | Cite as

Porphyrin biosynthesis from porphobilinogen by duck blood hemolysate

  • Rosalia B. Frydman
  • Benjamin Frydman
  • Graciela Feinstein


The formation of porphyrins from porphobilinogen by a duck blood hemolysate was examined. The system was found to form mainly protoporphyrin IX and hemin, and accumulated lesser amounts of uroporphyrins, heptacarboxylic porphyrin, and coproporphyrins. By storage at −20° the accumulation of uroporphyrins and heptacarboxylic porphyrin was increased. Both porphyrins were mainly the type III isomers. By addition of dithiothreitol the porphyrin pattern reversed to the original one formed by the fresh hemolysate. Addition of a number of amines also inhibited the decarboxylating system without affecting the original isomer distribution among the porphyrins. Addition of Fe2+ (3mm) did not affect the porphyrin pattern or the isomer distribution. Addition of Pb2+ (2.5mm) partially inhibited the decarboxylating system, whereas at higher concentrations (4mm) it increased the decarboxylation rate of the heptacarboxylic porphyrin. The obtained results are discussed in relation to porphyrin accumulation in porphyria cutanea tarda and in acquired hepatic porphyrias.


Porphyrin Dithiothreitol Hemin Protoporphyrin Porphyria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shemin, D., 1955.The Harvey Lectures, 50, 258.Google Scholar
  2. 2.
    Romeo, G., and Levin, E. Y., 1971.Biochim. Biophys. Acta, 230, 330.Google Scholar
  3. 3.
    Lascelles, J., 1964. Tetrapyrrole Biosynthesis and its Regulation, Benjamin, New York.Google Scholar
  4. 4.
    Jackson, A. H., Sancovich, H. A., Ferramola, A. M., Evans, N., Games, D. E., and Martin, S. A., 1976.Phil. Trans. R. Soc. Lond. B, 273, 191.Google Scholar
  5. 5.
    Goldstein, J. A., Hickman, P., Bergman, H., and Vos, J. G., 1973.Res. Comm. in Chem. Pathology and Pharmacology, 6, 919.Google Scholar
  6. 6.
    Kushner, J. P., and Barbuto, A. J., 1974.Clin. Res., XXII, 178A.Google Scholar
  7. 7.
    Watson, C. J., Cardinal, R. A., Bossenmaier, I., and Petryka, Z. J., 1976.Proc. Nat. Acad. Sci. U.S.A., 73, 1323.Google Scholar
  8. 8.
    Schermuly, E., and Doss, M., 1976.Annals of Clin. Res., 8,Suppl. 17, 92.Google Scholar
  9. 9.
    Kushner, J. P., Lee, G. R., and Nacht, S., 1972.J. Clin. Invest., 51, 3044.Google Scholar
  10. 10.
    Blekkenharst, G. H., Pimstone, N. R., Webber, B. L., and Eales, L., 1976.Annals of Clin. Res. 8,Suppl. 17, 108.Google Scholar
  11. 11.
    Frydman, R. B., and Feinstein, G., 1974.Biochim. Biophys. Acat, 293, 506.Google Scholar
  12. 12.
    Frydman, R. B., and Frydman, B., 1970.Arch. Biochem. Biophys., 136, 193.Google Scholar
  13. 13.
    Doss, M., 1967.J. Chromatogr., 30, 265.Google Scholar
  14. 14.
    Bogorad, L., 1963.Ann. N.Y. Acad. Sci., 104, 676.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1977

Authors and Affiliations

  • Rosalia B. Frydman
    • 1
  • Benjamin Frydman
    • 1
  • Graciela Feinstein
    • 1
  1. 1.Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations