Skip to main content
Log in

Adaptive character of liver glucokinase

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    Glucokinase is one of four glucose phos-phorylating enzymes present in rat liver. Its distinctive features are a high Km for glucose (high-Km isozyme) and a rather narrow substrate specificity. In contrast, the other three enzymes, collectively called hexokinases or low-Km isozymes, exhibit low Km values for glucose and a wider substrate specificity.

  2. 2.

    Glucokinase is present in the liver of mammals (with some exceptions), amphibians and lower reptiles. It is absent from higher reptiles and birds. The presence or absence of glucokinase may represent an evolutionary adaptation to feeding habits and other physiological peculiarities. Differences in the immunological behavior and in the kinetic parameters of glucokinases from different taxa suggest the operation of divergent evolution.

  3. 3.

    The levels of glucokinase in rat liver depend strictly on the supply of carbohydrate in the diet. Glycogen phosphorylase and glycogen synthetase behave similarly, whereas other carbohydrate-metabolizing enzymes depend on the provision of either protein or protein plus carbohydrate. Glucokinase decays with a half-life of 33 hr when rats are starved or fed a carbohydrate-free diet, and is induced by the administration of glucose. The adaptive character is not exhibited by all mammals, indicating evolutionary discrimination within the same class and even within the same single order Rodentia. Enzyme adaptation in the liver may partially explain the condition known as ‘hunger diabetes’.

  4. 4.

    The endocrine system plays a paramount role in glucokinase adaptation, since insulin is essential for glucose-dependent glucokinase induction and, on the other hand, glucagon, catecholamines and cyclic AMP prevent the induction. Glucocorticoids and some pituitary hormones modulate the rate of induction. The mechanisms underlying the hormonal regulation of glucokinase levels are not well known.

  5. 5.

    The variations in liver glucokinase correspond to changes in the amount of enzyme protein as assessed by immunochemical titration. This fact agrees with the effects of inhibitors of protein synthesis on glucokinase induction.

  6. 6.

    An antiserum against rat glucokinase reacts with the enzyme from mammals and turtles but not with the amphibian enzyme. It does not react with low-Km hexokinases from different sources.

  7. 7.

    The saturation function for glucose is sigmoidal in mammalian and amphibian glucokinases but not in glucokinase from lower reptiles. The Hill's coefficient is very constant with values about 1.6. The K0.5 (concentration for half saturation) values in the different species studied vary between 1.5 and 8mm. These kinetic parameters may be considered as another adaptive feature aimed to give maximal efficiency to the liver uptake of glucose at the changeable concentrations in the blood resulting from variations in the amount of dietary glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bernard, Leçons sur les propriétés physiologiques et les altérations pathologiques des liquides de l'organisme, Vol. 2, p. 79, Paris (1859).

  2. C. Bernard, Leçons sur le diabète et la glycogenèse animale, p. 70. Paris (1877).

  3. F. Hofmeister, Arch. Exp. Path. Pharm. 26, 355–370 (1890).

    Google Scholar 

  4. W. H. Chambers, Physiol. Revs. 18, 248–296 (1938).

    Google Scholar 

  5. K. Lundbaek, Yale J. Biol. Med. 20, 533–544 (1948).

    Google Scholar 

  6. E. J. Masoro, I. L. Chaikoff, S. S. Chernick and J. M. Felts, J. Biol. Chem. 185, 845–856 (1950).

    Google Scholar 

  7. G. H. Wyshak and I. L. Chaikoff, J. Biol. Chem. 200, 851–857 (1953).

    Google Scholar 

  8. A. E. Renold, C.-T. Teng, F. B. Nesbett and A. B. Hastings, J. Biol. Chem. 204, 533–546 (1953).

    Google Scholar 

  9. B. R. Landau, A. B. Hastings and S. Zottu, J. Biol. Chem. 233, 1257–1263 (1958).

    Google Scholar 

  10. R. Hill, N. Baker and I. L. Chaikoff, J. Biol. Chem. 209, 705–716 (1954).

    Google Scholar 

  11. W. E. Knox, V. H. Auerbach and E. C. C. Lin, Physiol. Revs. 36, 164–254 (1956).

    Google Scholar 

  12. R. T. Schimke and D. Doyle, Ann. Rev. Biochem. 39, 929–976 (1970).

    Google Scholar 

  13. N. Pérez, L. Clark-Turri, E. Rabajille and H. Niemeyer, J. Biol. Chem. 239, 2420–2426 (1964).

    Google Scholar 

  14. H. Niemeyer, L. Clark-Turri, E. Garcés and F. E. Vergara, Arch. Biochem. Biophys. 98, 77–85 (1962).

    Google Scholar 

  15. V. R. Potter and T. Ono, Cold Spring Harbor Symp. Quant. Biol. 26, 355–362 (1961).

    Google Scholar 

  16. H. A. Krebs and L. V. Eggleston, Biochem. J. 94, 3C–4C (1965).

    Google Scholar 

  17. T. Tanaka, Y. Harano, F. Sue and H. Morimura, J. Biochem. 62, 71–91 (1967).

    Google Scholar 

  18. H. Niemeyer, N. Pérez, J. Radojković and T. Ureta, Arch. Biochem. Biophys. 96, 662–669.

  19. H. A. Lardy, D. O. Foster, J. W. Young, E. Shrago and P. D. Ray, J. Cell. Comp. Physiol. 66, 39–54 (1965).

    Google Scholar 

  20. J. Larner, Trans. N.Y. Acad. Sci. 29, 192–209 (1966).

    Google Scholar 

  21. D. F. Steiner, Nature 204, 1171–1173 (1964).

    Google Scholar 

  22. H. Niemeyer, C. González and R. Rozzi, J. Biol. Chem. 236, 610–613 (1961).

    Google Scholar 

  23. H. Niemeyer, J. Radojković and N. Pérez, Arch. Biochem. Biophys. 97, 285–291 (1962).

    Google Scholar 

  24. V. T. Maddaiah and N. B. Madsen, Biochim. Biophys. Acta 121, 261–268 (1966).

    Google Scholar 

  25. H. Niemeyer, L. Clark-Turri and E. Rabajille, Nature 198, 1096–1097 (1963).

    Google Scholar 

  26. L. Clark-Turri, C. González, N. Pérez, E. Rabajille and H. Niemeyer, Arch. Biol. Med. Exper. 1, 157–164 (1964).

    Google Scholar 

  27. D. G. Walker, Biochim. Biophys. Acta 77, 209–266 (1963).

    Google Scholar 

  28. E. Viñuela, M. Salas and A. Sols, J. Biol. Chem. 238, PC1175–1177 (1963).

    Google Scholar 

  29. C. Sharma, R. Manjeshwar and S. Weinhouse, J. Biol. Chem. 238, 3840–3845 (1963).

    Google Scholar 

  30. C. González, T. Ureta, R. Sánchez and H. Niemeyer, Biochem. Biophys. Res. Commun. 16, 347–352 (1964).

    Google Scholar 

  31. C. González, T. Ureta, J. Babul, E. Rabajille and H. Niemeyer, Biochemistry 6, 460–468 (1967).

    Google Scholar 

  32. L. Grossbard and R. T. Schimke, J. Biol. Chem. 241, 3546–3560 (1966).

    Google Scholar 

  33. S. J. Pilkis, R. J. Hansen and M. E. Krahl, Biochim. Biophys. Acta 154, 250–252 (1968).

    Google Scholar 

  34. C. González and T. Ureta, Abstracts of the Fifth Annual Meeting of the Sociedad Argentina de Investigaciones Bioquïmicas, p. 31. Tucumán, Argentina (1969).

  35. G. Berthillier, L. Colobert, M. Richard and R. Got, Biochim. Biophys. Acta 206, 1–16 (1970).

    Google Scholar 

  36. G. Chamorro and R. Schilkrut, Tesis de Carrera Académica, Facultad de Medicina, Universidad de Chile (1969).

  37. T. Ureta, C. González, S. Lillo and H. Niemeyer, Comp. Biochem. Physiol. 40B, 71–80 (1971).

    Google Scholar 

  38. B. Borrebaek, E. Hultman, L. H. Nilsson, A. E. Roch-Norlund and Ø. Spydevold, Biochem. Medicine 4, 469–475 (1970).

    Google Scholar 

  39. R. Hornichter, J. Brown and H. Snow, Clin. Res. 15, 109 (1967).

    Google Scholar 

  40. D. L. DiPietro and S. Weinhouse, J. Biol. Chem. 235, 2542–2545 (1960).

    Google Scholar 

  41. M. Salas, E. Viñuela and A. Sols, J. Biol. Chem. 238, 3535–3538 (1963).

    Google Scholar 

  42. S. S. Chernick and I. L. Chaikoff, J. Biol. Chem. 188, 389–396 (1951).

    Google Scholar 

  43. G. Weber, R. L. Singhal, N. B. Stamm, M. A. Lea and E. A. Fisher, Adv. Enzyme Regulation 4, 59–81 (1966).

    Google Scholar 

  44. A. Sillero, M. A. G. Sillero and A. Sols, Eur. J. Biochem. 10, 351–354 (1969).

    Google Scholar 

  45. H. M. Katzen, Adv. Enzyme Regulation 5, 335–356 (1967).

    Google Scholar 

  46. H. Niemeyer, N. Pérez and R. Codoceo, J. Biol. Chem. 242, 860–864 (1967).

    Google Scholar 

  47. S. J. Pilkis, Biochim. Biophys. Acta 215, 461–476 (1970).

    Google Scholar 

  48. H. Niemeyer, N. Pérez and E. Rabajille, J. Biol. Chem. 241, 4055–4059 (1966).

    Google Scholar 

  49. H. Niemeyer and T. Ureta,in Molecular Basis of Biological Activity (K. Gaede, B. L. Horecker and W. J. Whelan, eds.) pp. 221–273, Academic Press, New York, 1972.

    Google Scholar 

  50. H. C. Pitot, C. Peraino, N. Pries and A. L. Kennan, Adv. Enzyme Regulation 2, 237–247 (1964).

    Google Scholar 

  51. T. Ureta, J. Radojković and H. Niemeyer, J. Biol. Chem. 245. 4819–4824 (1970).

    Google Scholar 

  52. D. G. Walker and S. Rao, Biochem. J. 90, 360–368 (1964).

    Google Scholar 

  53. H. Niemeyer, L. Clark-Turri, N. Pérez and E. Rabajille, Arch. Biochem. Biophys. 109, 634–645 (1965).

    Google Scholar 

  54. D. G. Walker, Adv. Enzyme Regulation 3, 163–184 (1965).

    Google Scholar 

  55. S. C. Jamdar and O. Greengard, J. Biol. Chem. 245, 2779–2783 (1970).

    Google Scholar 

  56. C. Peraino, Biochim. Biophys. Acta 165, 108–112 (1968).

    Google Scholar 

  57. H. Niemeyer,in Metabolic Adaptation and Nutrition (Pan American Health Organization) pp. 36–44, Washington, 1971.

  58. R. J. Hansen, S. J. Pilkis and M. E. Krahl, Endocrinology 86, 57–65 (1970).

    Google Scholar 

  59. H. Niemeyer, N. Pérez, E. Garcés and F. E. Vergara, Biochim. Biophys. Acta 62, 411–413 (1962).

    Google Scholar 

  60. F. T. Kenney, Science 156, 525–528 (1967).

    Google Scholar 

  61. H. Niemeyer, Natl. Cancer Inst. Monograph 27, 29–40 (1967).

    Google Scholar 

  62. L. Clark-Turri, J. Peñaranda, E. Rabajille and H. Niemeyer, FEBS Letters 41, 342 (1974).

    Google Scholar 

  63. S. J. Pilkis, R. J. Hansen and M. E. Krahl, Comp. Biochem. Physiol. 25, 903–912 (1968).

    Google Scholar 

  64. D. Porte Jr., J. Clin. Invest. 46, 86–94 (1967).

    Google Scholar 

  65. V. Leclercq-Meyer, G. R. Brisson and W. J. Malaisse, Nature 231, 248–249 (1971).

    Google Scholar 

  66. J. H. Exton, L. S. Jefferson Jr., R. W. Butcher and C. R. Park, Am. J. Med. 40, 709–715 (1966).

    Google Scholar 

  67. J. H. Exton and C. R. Park, Adv. Enzyme Regulation 6, 391–407 (1968).

    Google Scholar 

  68. L. S. Jefferson, J. H. Exton, R. W. Butcher, E. W. Sutherland and C. R. Park, J. Biol. Chem. 243, 1031–1038 (1968).

    Google Scholar 

  69. R. L. Jungas, Proc. Natl. Acad. Sci. 56, 757–763 (1966).

    Google Scholar 

  70. R. W. Butcher, C. E. Baird and E. W. Sutherland, J. Biol. Chem. 243, 1705–1712 (1968).

    Google Scholar 

  71. M. Rodbell, A. B. Jones, G. E. Chiappe de Cingolani and L. Birnbaumer, Recent Progr. Hormone Res. 24, 215–254 (1968).

    Google Scholar 

  72. J. M. Olavarrïa, O. G. R. Gödeken, R. Sandruss and M. Flawiá, Biochim. Biophys. Acta 165, 185–188 (1968).

    Google Scholar 

  73. M. J. Parry and D. G. Walker, Biochem. J. 105, 473–482 (1967).

    Google Scholar 

  74. M. L. Cárdenas, E. Rabajille and H. Niemeyer, Abstracts of the XVI Annual Meeting of the Sociedad de Biologia de Chile, p. R-12, Santiago, Chile (1974).

    Google Scholar 

  75. T. Ureta, J. Radojković, J. C. Slebe and S. B. Reichberg, Int. J. Biochem. 3, 103–110 (1972).

    Google Scholar 

  76. T. Ureta, S. B. Reichberg, J. Radojković and J. C. Slebe, Comp. Biochem. Physiol. 45B, 445–461 (1973).

    Google Scholar 

  77. T. Ureta, J. C. Slebe, J. Radojković and C. Lozano, Comp. Biochem. Physiol.In the press.

  78. F. J. Ballard, Comp. Biochem. Physiol. 14, 437–443 (1965).

    Google Scholar 

  79. T. Ureta, C. González and H. Niemeyer, Comp. Biochem. Physiol. 40B, 81–91 (1971).

    Google Scholar 

  80. T. Ureta, J. C. Slebe, J. Radojković, C. Lozano, J. Babul, R. Bravo, A. Perea and S. Reichberg, Abstracts of the XV Annual Meeting of the Sociedad de Biologia de Chile, p. R-33, Santiago, Chile (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An Invited article. This paper is dedicated to Prof. FritzLipmann on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, H., Ureta, T. & Clark-Turri, L. Adaptive character of liver glucokinase. Mol Cell Biochem 6, 109–126 (1975). https://doi.org/10.1007/BF01732005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732005

Keywords

Navigation