Skip to main content
Log in

Roundoff error analysis of algorithms based on Krylov subspace methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study the roundoff error propagation in an algorithm which computes the orthonormal basis of a Krylov subspace with Householder orthonormal matrices. Moreover, we analyze special implementations of the classical GMRES algorithm, and of the Full Orthogonalization Method. These techniques approximate the solution of a large sparse linear system of equations on a sequence of Krylov subspaces of small dimension. The roundoff error analyses show upper bounds for the error affecting the computed approximated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Axelsson,Conjugate gradient type methods for unsymmetric and inconsistent systems of equations, Linear Algebra Appl., 29 (1980), pp. 1–16.

    Google Scholar 

  2. P. N. Brown,A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 58–78.

    Google Scholar 

  3. P. Concus and G. H. Golub,A generalized conjugate gradient method for nonsymmetric systems of linear equations, Tech. Rep. STAN-CS-76-535, Stanford University, Stanford CA, 1976.

    Google Scholar 

  4. J. Drkošová, A. Greenbaum, M. Rozložník, and Z. Strakoš,Numerical stability of GMRES, BIT 35 (1995), pp. 309–330.

    Google Scholar 

  5. S. C. Eisenstat, H. C. Elman, and M. H. Schultz,Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp.245–357.

    Google Scholar 

  6. H. C. Elman,Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations, PhD thesis, Yale University, New Haven CT, 1982.

    Google Scholar 

  7. D. Goldberg,What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, 23, (1991), pp. 5–48.

    Google Scholar 

  8. G. H. Golub and C. VanLoan,Matrix Computations.2nd ed., The Johns Hopkins University Press, Baltimore, MD, 1989.

    Google Scholar 

  9. K. C. Jea and D. M. Young,Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl., 34 (1980), pp. 159–194.

    Google Scholar 

  10. C. Lawson and R. Hanson,Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, NJ, 1974.

    Google Scholar 

  11. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,How fast are nonsymmetric matrix iterations?, SIAM J. Matrix. Anal. Appl. 13 (1992), pp. 778–795.

    Google Scholar 

  12. B. N. Parlett,The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  13. Y. Saad,Numerical Methods for Large Eigenvalue problems, Manchester University Press, Manchester, UK, 1992.

    Google Scholar 

  14. Y. Saad and M. H. Schultz,Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comp., 44 (1985), pp. 417–424.

    Google Scholar 

  15. ——,GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

    Google Scholar 

  16. H. A. Van der Vorst,Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631–644.

    Google Scholar 

  17. H. A. Van der Vorst,Lecture notes on iterative methods, Tech. Rep., CERFACS, Toulouse, France, 1992.

  18. P. K. W. Vinsome,ORTHOMIN: an iterative method for solving sparse sets of simultaneous linear equations, in Proc. Fourth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, 1976, pp. 149–159.

  19. H. F. Walker,Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152–163.

    Google Scholar 

  20. O. Widlund,A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 15 (1978), pp. 801–812.

    Google Scholar 

  21. J. H. Wilkinson,The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out with the financial contribution of the Human Capital and Mobility Programme of the European Union grant ERB4050PL921378.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arioli, M., Fassino, C. Roundoff error analysis of algorithms based on Krylov subspace methods. Bit Numer Math 36, 189–205 (1996). https://doi.org/10.1007/BF01731978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731978

Key words

Navigation