Skip to main content
Log in

Adaptive changes in the calorigenic effect of catecholamines: Role of changes in the adenyl cyclase system and of changes in the mitochondria

  • Review and General Articles
  • a. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    The adaptation responsible for a four-fold increase in the magnitude of the calorigenic response to catecholamines has been studied in the cold-acclimated rat which serves as a model in which the magnitude of the response can be varied by varying the acclimation temperature.

  2. 2.

    It is not possible to attribute the enhanced calorigenic response to noradrenaline to an increase in the noradrenaline-stimulated adenyl cyclase (the receptor system for noradrenaline) in either brown adipose tissue or skeletal muscle, the principal tissues in which the response occurs, because no increase in the activity of the noradrenaline-stimulated adenyl cyclase occurs in either tissue in cold-acclimated rats in association with the enhanced response to noradrenaline.

  3. 3.

    A transient increase in the total (fluoride-stimulated) adenyl cyclase occurs in brown adipose tissue during the first week of acclimation to cold. The increase takes place in the absence of protein synthesis and is thought to be due to an alteration of the properties of the plasma membrane as a consequence of the intense cold-induced sympathetic stimulation of this tissue. Transient increases in both total (fluoride-stimulated) and catecholamine-stimulated adenyl cyclase have been observed in skeletal muscle during the first week of acclimation to cold, apparently in association with shivering, but are no longer present when acclimation has fully developed.

  4. 4.

    The mitochondria of both red and white skeletal muscle of cold-acclimated rats are shown to be increased in number but decreased in size. The total mitochondrial mass per gram of muscle is not altered (no change in mitochondrial protein or cytochrome oxidase per gram of tissue) but the mitochondria are smaller (less protein and cytochrome oxidase per mitochondrion) and more numerous (more mitochondria per gram of muscle). Mitochondria isolated from the muscle of cold-acclimated rats have normal ADP/O and respiratory control ratios and an increased rate of state 3 and state 4 respiration. The morphologically altered mitochondria thus appear to have normal coupling and control mechanisms yet to differ metabolically in some respect.

  5. 5.

    The turnover of some, but not all, proteins of the skeletal muscle mitochondria and the brown adipose tissue mitochondria is accelerated in the cold-acclimated rat. The morphological alteration appears thus to be associated with an altered metabolism of mitochondrial proteins.

  6. 6.

    Inhibition of mitochondrial protein synthesis by oxytetracycline prevents the change in mitochondrial morphology (the appearance of the smaller and more numerous mitochondria) in muscle during acclimation to cold and causes its reversal if it has already taken place. It also prevents the proliferation of mitochondria in brown adipose tissue and reverses it if it has already occurred. Mitochondrial protein synthesis is therefore necessary for the development and the maintenance of the altered mitochondrial morphology in both skeletal muscle and brown adipose tissue of the cold-acclimated rat. The treatment with oxytetracycline also prevents the development of the enhanced calorigenic response to noradrenaline during acclimation to cold and reverses it if it has already developed. When cold-acclimated rats undergo deacclimation the increased number of mitochondria in muscle diminishes as does the enhancement of the calorigenic response to noradrenaline. It is concluded that the enhancement of the calorigenic response to noradrenaline is closely associated with the alteration of the mitochondria of muscle and brown adipose tissue.

  7. 7.

    Removal of about one third of the total brown adipose tissue showed that this tissue could not be a major site of the enhanced calorigenic response to noradrenaline in cold-acclimated rats. However, the interscapular brown adipose tissue exerted an influence on the capacity of other tissues, presumably skeletal muscle, to maintain an enhanced calorigenic response to noradrenaline. An endocrine function of interscapular brown adipose tissue has been proposed.

  8. 8.

    The detailed biochemical mechanism of the calorigenic response to noradrenaline remains a mystery. However, the four-fold enhancement of the response in cold-acclimated rats is shown to be associated with an alteration in muscle mitochondria which requires mitochondrial protein synthesis and an increased turnover of some mitochondrial proteins. Moreover, it is influenced in an unknown way by the brown adipose tissue. The alteration in function of these altered mitochondria is not revealed by conventional measurements of metabolic functions. The way in which the altered mitochondria permit the muscle to respond to noradrenaline with such a large increase in metabolic rate is still unknown. It is hoped that the observations reported here will provide some clues to its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Boothby and I. Sandiford, Am. J. Physiol. 66, 93–123 (1923).

    Google Scholar 

  2. F. R. Griffith Jr., Physiol. Rev. 31, 151–187 (1951).

    Google Scholar 

  3. S. Ellis, Pharmacol. Rev. 8, 485–562 (1956).

    Google Scholar 

  4. J. Himms-Hagen, Pharmacol. Rev. 19, 367–461 (1967).

    Google Scholar 

  5. J. Himms-Hagen, inHandbook of Experimental Pharmacology (H. Blaschko and E. Muscholl, editors) Vol. 33, pp 363–462 Springer, Berlin (1972).

    Google Scholar 

  6. Sz. Donhoffer, inNonshivering Thermogenesis (L. Jansky, editor) pp 11–25, Academia, Prague, and Swets and Zeitlinger N.V., Amsterdam (1971).

    Google Scholar 

  7. J. Himms-Hagen, inHandbook of Physiology (A. D. Smith and H. Blaschko, editors)Adrenal Medulla American Physiological Society, Washington, in press (1974).

    Google Scholar 

  8. L. Jansky, Biol. Rev. 48, 85–132 (1973).

    Google Scholar 

  9. D. D. Williams, Comp. Biochem. Physiol. 27, 567–573 (1968).

    Google Scholar 

  10. F. Depocas, Can. J. Biochem. Physiol. 38, 107–114 (1960).

    Google Scholar 

  11. L. Jansky, R. Bartunkova, and E. Zeisberger, Physiol. Bohemoslov. 16, 366–372 (1967).

    Google Scholar 

  12. J. S. Hart, O. Héroux, and F. Depocas, J. appl. Physiol. 9, 404–408 (1956).

    Google Scholar 

  13. A. Bulychev, R. Kramar, Z. Drahota, and O. Lindberg, Exptl Cell Res. 72, 169–187 (1972).

    Google Scholar 

  14. E. N. Christiansen, Z. Drahota, J. Duszynski, and L. Wojtczak, Eur. J. Biochem. 34, 506–512 (1973).

    Google Scholar 

  15. J. I. Pedersen and T. Flatmark, Biochim. biophys. Acta 305, 219–229 (1973).

    Google Scholar 

  16. J. Rafael, H. W. Heldt, and H.-J. Hohorst, FEBS Letters 28, 125–128 (1972).

    Google Scholar 

  17. J. Himms-Hagen, inAdvances in Enzyme Regulation (G. Weber, editor) Vol. 8, pp 131–151, Pergamon Press, New York (1970).

    Google Scholar 

  18. P. Dorigo, I. Maragno, A. Bressa, and G. Fassina, Biochem. Pharmacol. 20, 1201–1211 (1971).

    Google Scholar 

  19. J. Himms-Hagen, Lipids 7, 310–323 (1972).

    Google Scholar 

  20. L. Bukowiecki and J. Himms-Hagen, Can. J. Physiol. Pharmacol. 49, 1015–1018 (1971).

    Google Scholar 

  21. L. Ernster and K. Nordenbrand, inMethods in Enzymology (R. E. Estabrook and M. E. Pullman, editors) Vol. X, pp 86–94, Academic Press, New York (1967).

    Google Scholar 

  22. D. S. Beattie, R. E. Basford, and S. B. Koritz, Biochemistry 5, 926–930 (1966).

    Google Scholar 

  23. D. S. Beattie, R. E. Basford, and S. B. Koritz, J. Biol. Chem. 242, 4584–4586 (1967).

    Google Scholar 

  24. K. Weber, J. R. Pringle, and M. Osborn, inMethods in Enzymology (C. H. W. Hirs and S. N. Timasheff, editors) Vol XXVI, pp 3–27, Academic Press, New York (1972).

    Google Scholar 

  25. J. W. Baranowicz, Analyt. Biochem. 45, 1–5 (1972).

    Google Scholar 

  26. M. Muirhead and J. Himms-Hagen, Can. J. Biochem. 49, 802–810 (1971).

    Google Scholar 

  27. M. Muirhead and J. Himms-Hagen, Can. J. Biochem. 52, 176–180 (1974).

    Google Scholar 

  28. J. H. Luft, J. Biophys. Biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  29. L. Girardier and J. Seydoux, J. Physiol. (Paris) 63, 147–186 (1971).

    Google Scholar 

  30. B. A. Horwitz, J. M. Horowitz, and R. Em. Smith, Proc. Nat. Acad. Sci. 64, 113–120 (1969).

    Google Scholar 

  31. P. A. Herd, B. A. Horwitz, and R. Em. Smith, Experientia 26, 825–826 (1970).

    Google Scholar 

  32. J. M. Horowitz, B. A. Horwitz, and R. Em. Smith, Experientia 27, 1419–1421 (1971).

    Google Scholar 

  33. M. Muirhead, A. Inglis, and J. Himms-Hagen, Can. J. Biochem. 52, 414–417 (1974).

    Google Scholar 

  34. D. G. Therriault, R. W. Hubbard, and D. B. Mellin, Lipids 4, 413–420 (1969).

    Google Scholar 

  35. D. G. Therriault, J. F. Morningstar Jr., and S. V. G. Winters, Life Sci. 8, part II, 1353–1358 (1969).

    Google Scholar 

  36. A. C. L. Hsieh, C. W. Pun, K. M. Li, and K. W. Ti, Federation Proc. 25, 1205–1209 (1966).

    Google Scholar 

  37. E. R. Suter, J. Ultrastructure Res. 26, 216–241 (1969).

    Google Scholar 

  38. J. Skala, T. Barnard, and O. Lindberg, Comp. Biochem. Physiol. 22, 509–528 (1970).

    Google Scholar 

  39. J. Himms-Hagen and W. Behrens, Federation Proc. 33, 424 (1974).

    Google Scholar 

  40. G. F. Gauthier, Z. Zellforsch. 95, 462–482 (1969).

    Google Scholar 

  41. G. F. Gauthier, inThe Physiology and Biochemistry of Muscle as a Food (E. J. Briskey, R. G. Cassens, and B. B. Marsh, editors) Vol II, pp 103–130, University of Wisconsin Press (1970).

  42. M. A. Ariano, R. B. Armstrong, and V. R. Edgerton, J. Histochem. Cytochem. 21, 51–55 (1973).

    Google Scholar 

  43. C. S. Owen and D. F. Wilson, Arch. Biochem. Biophys. 161, 581–591 (1974).

    Google Scholar 

  44. D. Garfinkel, M. J. Achs, and L. Dzubow, Federation Proc. 33, 176–182 (1974).

    Google Scholar 

  45. D. F. Wilson, M. Stubbs, R. L. Veech, M. Erecinska, and H. A. Krebs, Biochem. J. 140, 57–64 (1974).

    Google Scholar 

  46. S. B. Prusiner, B. Cannon, T. M. Ching, and O. Lindberg, Eur. J. Biochem. 7, 51–57 (1968).

    Google Scholar 

  47. B. Cannon, Eur. J. Biochem. 23, 125–135 (1971).

    Google Scholar 

  48. K. J. Hittelman, O. Lindberg, and B. Cannon, Eur. J. Biochem. 11, 183–192 (1969).

    Google Scholar 

  49. J. I. Pedersen and H. J. Grav, Eur. J. Biochem. 25, 75–83 (1972).

    Google Scholar 

  50. H. T. Andersen, E. N. Christiansen, H. J. Grav, and J. I. Pedersen, Acta physiol. scand. 80, 1–10 (1970).

    Google Scholar 

  51. J. Himms-Hagen, Can. J. Physiol. Pharmacol. 49, 545–553 (1971).

    Google Scholar 

  52. M. Rabinowitz and H. Swift, Physiol. Rev. 50, 376–427 (1970).

    Google Scholar 

  53. H. De Vries and A. M. Kroon, Biochim. Biophys. Acta 204, 531–541 (1970).

    Google Scholar 

  54. H. G. Du Buy and J. L. Showacre, Science 133, 196–197 (1961).

    Google Scholar 

  55. F. C. Firkin and A. W. Linnane, Biochem. Biophys. Res. Commun. 32, 398–402 (1968).

    Google Scholar 

  56. D. Haldar and K. B. Freeman, Can. J. Biochem. 46, 1009–1017 (1968).

    Google Scholar 

  57. S. S. Kaplan and S. Finch, Proc. Soc. Exp. Biol. Med. 134, 287–290 (1970).

    Google Scholar 

  58. J. Leduc and P. Rivest, Rev. Can. Biol. 28, 49–66 (1969).

    Google Scholar 

  59. J. Himms-Hagen, J. Physiol. 205, 393–403 (1969).

    Google Scholar 

  60. J. Himms-Hagen, Can. J. Physiol. Pharmacol. 52, 225–229 (1974).

    Google Scholar 

  61. J. Himms-Hagen, L. Bukowiecki, W. Behrens, and M. Bonin, inEnvironmental Physiology, Bioenergetics (R. Em. Smith, editor) pp 127–133, Federation of American Societies for Experimental Biology, Bethesda (1972).

    Google Scholar 

  62. J. O. Holloszy, L. B. Oscai, P. A. Molé, and I. J. Don, inAdvances in Experimental Medicine and Biology, (B. Pernow and B. Saltin, editors), Vol. 11, pp 51–61, Plenum Press, New York (1971).

    Google Scholar 

  63. H. Kraus, R. Kirsten, and J. R. Wolff, Pflügers Arch. 308, 57–79 (1969).

    Google Scholar 

  64. S. B. Stromme and H. T. Hammel, J. appl. Physiol. 23, 815–824 (1967).

    Google Scholar 

  65. J. B. Chappell and S. V. Perry, Nature, Lond 173, 1094–1095 (1954).

    Google Scholar 

  66. S. R. Max, J. Garbus, and H. J. Wehman, Analyt. Biochem. 46, 576–584 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Work reported in this review was supported by a grant from the Medical Research Council of Canada.

In receipt of a 1967 Science Scholarship from the National Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himms-Hagen, J., Behrens, W., Muirhead, M. et al. Adaptive changes in the calorigenic effect of catecholamines: Role of changes in the adenyl cyclase system and of changes in the mitochondria. Mol Cell Biochem 6, 15–31 (1975). https://doi.org/10.1007/BF01731863

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731863

Keywords

Navigation