Molecular and Cellular Biochemistry

, Volume 6, Issue 1, pp 3–14 | Cite as

A proposed pathway of plasma glycoprotein synthesis

  • Janos Molnar
Review and General Articles a. review articles

Summary

Plasma glycoprotein synthesis in the liver occurs in a stepwise fashion. The first sugar, N-acetylglucosamine, is attached to the protein during the growth of the polypeptide chain on the membranebound ribosomes. Subsequent carbohydrates are incorporated after the completion of the protein in the lumen of the endoplasmic reticulum and Golgi apparatus. The reactions are carried out by enzymes strongly bound to the membranes. Because the glycosylation reaction occurs in the interior of the cytoplasmic tubules a permeability problem for the nucleotide sugar exists. Recent studies indicate that sugar-lipids are formed on the cytoplasmic site of the membrane and these complexes transfer the sugars across the membrane. Experimental evidence for this pathway is presented in this article.

Keywords

Sugar Nucleotide Carbohydrate Endoplasmic Reticulum Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Robinson, J. Molnar and R. J. Winzler. J. Biol. Chem. 239, 1134–1141 (1964).Google Scholar
  2. 2.
    J. Molnar, G. B. Robinson and R. J. Winzler. J. Biol. Chem. 239, 3157–3162 (1969).Google Scholar
  3. 3.
    J. Molnar, G. B. Robinson and R. J. Winzler. J. Biol. Chem. 240, 1882–1888 (1965).Google Scholar
  4. 4.
    A. L. Tarentino, T. H. Plummer, Jr. and F. J. Maley. Biol. Chem. 247, 2629–2631 (1972).Google Scholar
  5. 5.
    J. Molnar, M. Tetas and H. Chao, Biochem. Biophys. Res. Commum. 37, 684–690 (1969).Google Scholar
  6. 6.
    J. Molnar. International Symposium on Glycoconjugates, University of Sciences and Techniques, Lille, France. In press.Google Scholar
  7. 7.
    G. Blobel and D. D. Sabatini. J. Cell Biol. 45, 130–145 (1970).Google Scholar
  8. 8.
    H. Schachter, I. Jabbal, R. L. Hudgin, E. J. McGuire S. Roseman and L. Pinteric. J. Biol. Chem. 245, 1090–1100 (1970).Google Scholar
  9. 9.
    J. J. M. Bergeron, J. H. Ehrenreich, P. Siekevitz and G. E. Palade. J. Cell Biol. 59, 73–88 (1973).Google Scholar
  10. 10.
    J. F. Caccam, J. J. Jackson and E. H. Eylar. Biochem. Biophys. Res. Commun. 35, 505–511 (1969).Google Scholar
  11. 11.
    M. Tetas, H. Chao and J. Molnar. Arch. Biochem. Biophys. 138, 135–146 (1970).Google Scholar
  12. 12.
    R. C. Slabaugh and A. J. Morris. J. Biol. Chem. 245, 6182–6189 (1970).Google Scholar
  13. 13.
    G. Dallner. Acta Path. Microbiol. Scand. Suppl. 166, 1–94 (1963).Google Scholar
  14. 14.
    Y. Ikehara, J. Molnar and H. Chao. Biochem. Biophys. Acta 247, 486–495 (1971).Google Scholar
  15. 15.
    F. Appelmans, R. Wattiaux and C. DeDuve. Biochem J. 59, 438–446 (1955).Google Scholar
  16. 16.
    J. Molnar and D. Sy. Biochemistry, 6, 1941–1947 (1967).Google Scholar
  17. 17.
    T. Hallinan, C. N. Murty and J. H. Grant. Arch. Biochem. Biophys. 125, 715–720 (1968).Google Scholar
  18. 18.
    H. Sinohara and H. H. Sky-Peck. Biochem. Biophys. Acta 101, 90–96 (1965).Google Scholar
  19. 19.
    G. R. Lawford and H. Schachter. J. Biol. Chem. 241, 5408–5418 (1966).Google Scholar
  20. 20.
    R. R. Wagner, E. Petterson and G. Dallner. J. Cell Sci. 12, 603–615 (1973).Google Scholar
  21. 21.
    S. Roseman, Biochemistry of Glycoproteins and Related Substances; Proceedings of the 4th International Conference on Cystic Fibrosis in the Pancreas. S. Karger, Basel, 244- (1968).Google Scholar
  22. 22.
    C. M. Redman and M. G. Cherian, J. Cell Biol. 52, 231 (1972).Google Scholar
  23. 23.
    R. G. Spiro and M. J. Spiro. J. Biol. Chem. 241, 1271–1282 (1966).Google Scholar
  24. 24.
    A. Herscovics. Biochem. J. 112, 709–719 (1969).Google Scholar
  25. 25.
    P. Whur, A. Herscovics and C. P. Leblond. J. Cell Biol. 43, 289–311 (1969).Google Scholar
  26. 26.
    M. Neutra and C. P. Leblond. J. Cell Biol. 30, 137 (1966).Google Scholar
  27. 27.
    R. Nilsson, E. Petterson and G. Dallner. J. Cell. Biol. 56, 762–776 (1973).Google Scholar
  28. 28.
    E. Pfaff and M. Klingenberg. European J. Biochem. 6, 66–79 (1968).Google Scholar
  29. 29.
    W. G. Struve, R. V. Sinha and F. C. Neuhaus. Biochemistry 5, 82–92 (1966).Google Scholar
  30. 30.
    I. M. Weiner, T. Higuchi, L. Rothfield, A. Saltmarsh, M. J. Osborn and B. L. Horacker, Proc. Natl. Acad. Sci. U.S., 54, 228–235 (1965).Google Scholar
  31. 31.
    M. Tetas, J. Molnar and H. Chao. Federation Proc. 28, 902 (1969).Google Scholar
  32. 32.
    D. Brooks and J. Baddiley. Biochem. J. 113, 635–642 (1969).Google Scholar
  33. 33.
    L. J. Douglas and J. Baddiley. FEBS Letters, 1, 114–116 (1968).Google Scholar
  34. 34.
    R. J. Watkinson, H. Hussey and J. Baddiley, Nature (New Biol.) 229, 57–59 (1971).Google Scholar
  35. 35.
    M. A. Ghalambor and R. J. Jeanloz. Federation Proc. 33, 813 (1974).Google Scholar
  36. 36.
    J. B. Richards and F. W. Hamming. Biochem. J. 130, 77–93 (1972).Google Scholar
  37. 37.
    J. W. Baynes, A. F. Hsu and E. C. Heath. J. Biol. Chem. 268, 5693–5704 (1973).Google Scholar
  38. 38.
    C. J. Waechter, J. J. Lucas and W. J. Lennarz. J. Biol. Chem. 248, 7570–7579 (1973).Google Scholar
  39. 39.
    L. DeLuca, G. Rosso and G. Wolf. Biochem. Biophys. Res. Comm. 41, 615–620 (1970).Google Scholar
  40. 40.
    R. M. Barr, C. S. Silverman and L. M. DeLuca. Federation Proc. 33, 810 (1974).Google Scholar
  41. 41.
    K. V. John. Federation Proc. 33, 811 (1974).Google Scholar
  42. 42.
    B. C. Johnson and G. Valakovich. Biochem. Biophys. Res. Comm. 48, 1437–1442 (1972).Google Scholar
  43. 43.
    E. H. Morgan and T. Peters, Jr. J. Biol. Chem. 246, 3508–3511 (1971).Google Scholar
  44. 44.
    F. Melchers and P. M. Knopf. Cold Spring Harbor Symp. Quant. Biol. 32, 255–262 (1967).Google Scholar
  45. 45.
    J. W. Uhr. Cellular Immunol. 1, 228–244 (1970).Google Scholar
  46. 46.
    N. J. Cowan and G. B. Robinson. FEBS Letters, 8, 6–8 (1970).Google Scholar
  47. 47.
    G. B. Robinson. FEBS Letters 4, 190–192 (1969).Google Scholar
  48. 48.
    S. Bouchilloux and C. Cheftel. Biochem. Biophys. Res. Commun. 23, 305–310 (1966).Google Scholar
  49. 49.
    C. Cheftel and S. Bouchilloux. Biochem. Biophys. Acta 170, 15–28 (1968).Google Scholar
  50. 50.
    A. Hagopian, H. B. Bosmann and E. H. Eylar. Arch. Biochem. Biophys. 128, 387–396 (1968).Google Scholar
  51. 51.
    B. Fleischer and S. Fleischer. Biochem. Biophys. Acta 219, 301–319 (1970).Google Scholar
  52. 52.
    W. P. Cunningham, H. H. Mollenhauer and S. E. Nyquist. J. Cell Biol. 51, 273–285 (1971).Google Scholar
  53. 53.
    I. Jabbal and H. Schachter, J. Biol. Chem. 246, 5154–5161 (1971).Google Scholar
  54. 54.
    A. J. Parodi, N. H. Behrens, L. F. Leloir and H. Carminatti. Proc. Nat. Acad. Sci. U.S.A. 69, 3268–3272 (1972).Google Scholar
  55. 55.
    A. J. Parodi, R. Staneloni, A. I. Canteralla, L. F. Leloir, N. H. Behrens, H. Carminatti and J. A. Levy. Carbo-hydrate Res. 26, 393–400 (1973).Google Scholar
  56. 56.
    N. H. Behrens, H. Carminatti, R. J. Staneloni, L. F. Leloir and A. I. Cantarella. Proc. Nat. Acad. Sci. U.S.A. 70, 3390–3394 (1973).Google Scholar
  57. 57.
    S. Roth, E. J. McGuire and S. Roseman. J. Cell Biol. 51, 536–547 (1971).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1975

Authors and Affiliations

  • Janos Molnar
    • 1
  1. 1.School of Basic Medical Sciences, Department of Biological ChemistryUniversity of Illinois at the Medical CenterChicagoUSA

Personalised recommendations