European Journal of Nuclear Medicine

, Volume 23, Issue 2, pp 213–225 | Cite as

The assessment of body composition in patients with cirrhosis

  • Marsha Y. Morgan
  • Angela M. Madden
Review article


Very little information is available on body composition in patients with cirrhosis. Difficulties arise in studying these patients because they tend to retain fluid and this results in changes in tissue density and in the hydration fraction of fat-free mass. As the classic body composition techniques rely on the assumption that these variables remain constant, use of these methods will result in either under- or overestimates of body composition variables. Use of multi-component models, employing two or more measurement techniques, will obviate the need for some of the assumptions inherent in the use of single techniques, thereby increasing the accuracy of the assessments, without loss of precision.

Key words

Body-composition methodology Cirrhosis Fat Fat-free mass Multi-component models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan MY. Enteral nutrition in chronic liver disease.Acta Chir Scand [Suppl] 1981; 507: 81–90.Google Scholar
  2. 2.
    DiCecco SR, Wieners EJ, Wiesner RH, Southorn PA, Plevak DJ, Krom RAF. Assessment of nutritional status of patients with end-stage liver disease undergoing liver transplantation.Mayo Clin Proc 1989; 64: 95–102.Google Scholar
  3. 3.
    Italian Multicentre Cooperative Project. Nutritional status in cirrhosis.J Hepatol 1994; 21: 317–325.Google Scholar
  4. 4.
    Shaw BW, Jr, Wood RP, Gordon RD, Iwatsuki S, Gillquist WP, Starzl TE. Influence of selected patient variables and operative blood loss on six-month survival following liver transplantation.Semin Liver Dis 1985; 5: 385–393.Google Scholar
  5. 5.
    Adler M, Gavaler JS, Duquesnoy R, Fung JJ, Svanas G, Starzl TE, van Thiel DH. Relationship between the diagnosis, preoperative evaluation, and prognosis after orthotopic liver transplantation.Ann Surg 1988; 208: 196–202.Google Scholar
  6. 6.
    Halliday AW, Benjamin IS, Blumgart LH. Nutritional risk factors in major hepatobiliary surgery.J Parenter Enteral Nutr 1988; 12: 43–48.Google Scholar
  7. 7.
    Moukarzel AA, Najm I, Vargas J, McDiarmid SV, Busuttil RW, Ament ME. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients.Transplant Proc 1990; 22: 1560–1563.Google Scholar
  8. 8.
    Arroyo V, Ginès P, Jiménez W, Rodés J. Ascites, renal failure, and electrolyte disorders in cirrhosis. Pathogenesis, diagnosis and treatment. In: McIntyre N, Benhamou J-P, Bircher J, Rizzetto M, Rodés J, eds.Oxford textbook of clinical hepatology. Oxford: Oxford University Press; 1991: 429–470.Google Scholar
  9. 9.
    Herrmann R, McIntyre N. Amino-acid metabolism, urea production, and pH regulation. In: McIntyre N, Benhamou J-P, Bircher J, Rizzetto M, Rodés J, eds.Oxford textbook of clinical hepatology. Oxford: Oxford University Press; 1991: 157–174.Google Scholar
  10. 10.
    Gerok W, Gross V. Secretory proteins; synthesis, secretion, and function. In: MyIntyre N, Benhamou J-P, Bircher J, Rizzetto M, Rodés J, eds.Oxford textbook of clinical hepatology. Oxford: Oxford University Press; 1991: 174–198.Google Scholar
  11. 11.
    Compston J. The effect of liver disease on bone. In: McIntyre N, Benhamou J-P, Bircher J, Rizzetto M, Rodés J, eds.Oxford textbook of clinical hepatology. Oxford: Oxford University Press; 1991: 1263–1272.Google Scholar
  12. 12.
    Baker JP, Detsky AS, Wesson DE, Wolman SL, Stewart S, Whitewell J, Langer B, Jeejeebhoy KN. Nutrition assessment. A comparison of clinical judgment and objective measurements.N Engl J Med 1982; 306: 969–972.Google Scholar
  13. 13.
    Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, Jeejeebhoy KN. What is subjective global assessment of nutritional status?J Parenter Enteral Nutr 1987; 11: 8–13.Google Scholar
  14. 14.
    Hasse J, Strong S, Gorman MA, Liepa G. Subjective global assessment: alternative nutrition-assessment technique for liver-transplant candidates.Nutrition 1993; 9: 339–343.Google Scholar
  15. 15.
    McCullough AJ, Tavill AS. Disordered energy and protein metabolism in liver disease.Semin Liver Dis 1991; 11: 265–277.Google Scholar
  16. 16.
    Porayko MK, DiCecco S, O'Keefe SJD. Impact of malnutrition and its therapy on liver transplantation.Semin Liver Dis 1991; 11: 305–314.Google Scholar
  17. 17.
    Heymsfield SB, Waki M, Reinus J. Are patients with chronic liver disease hypermetabolic?Hepatology 1990; 11: 502–505.Google Scholar
  18. 18.
    Madden AM, Morgan MY. A comparison of skinfold anthropometry and bioelectrical impedance analysis for measuring percentage body fat in patients with cirrhosis.J Hepatol 1994; 21: 878–883.Google Scholar
  19. 19.
    Behnke AR Jr, Feen BG, Welham WC. The specific gravity of healthy men.JAMA 1942; 118: 495–501.Google Scholar
  20. 20.
    Lukaski HC. Methods for the assessment of human body composition: traditional and new.Am J Clin Nutr 1987; 46: 537–556.Google Scholar
  21. 21.
    Jensen MD. Research techniques for body composition assessment.J Am Diet Assoc 1992; 92: 454–460.Google Scholar
  22. 22.
    Jebb SA, Elia M. Techniques for the measurement of body composition: a practical guide.Int J Obes 1993; 17: 611–621.Google Scholar
  23. 23.
    Siri WE. The gross composition of the body. In: Lawrence TH, Tobias CA, eds.Advances in biological and medical physics, vol. 4. New York: Academic Press; 1956: 239–280.Google Scholar
  24. 24.
    Garn SM, Nolan P Jr. A tank to measure body volume by water displacement (Bovota).Ann NY Acad Sci 1963; 110: 91–95.Google Scholar
  25. 25.
    Jones PRM, Norgan NG. A simple system for the determination of human body density by underwater weighing.J Physiol 1974; 239: 71P–73P.Google Scholar
  26. 26.
    Buskirk ER. Underwater weighing and body density. A review of procedures. In: Brozek J, Henschel A, eds.Techniques for measuring body composition. Washington DC: National Academy of Sciences, National Research Council; 1961: 90–106.Google Scholar
  27. 27.
    Lohman TG. Skinfolds and body density and their relation to body fatness: a review.Hum Biol 1981; 53: 181–225Google Scholar
  28. 28.
    Bedell GN, Marshall R, DuBois AB, Harris JH. Measurement of the volume of gas in the gastrointestinal tract. Values in normal subjects and ambulatory patients.J Clin Invest 1956; 35: 336–345.Google Scholar
  29. 29.
    Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition.Am J Clin Nutr 1990; 51: 1106–1112.Google Scholar
  30. 30.
    Pritchard JE, Nowson CA, Strauss BJ, Carlson JS, Kaymakci B, Wark JD. Evaluation of dual energy X-ray absorptiometry as a method of measurement of body fat.Eur J Clin Nutr 1993; 47: 216–228.Google Scholar
  31. 31.
    Fuller NJ, Laskey MA, Elia M. Assessment of the composition of major body regions by dual-energy X-ray absorptiometry (DEXA) with special reference to limb muscle mass.Clin Phys 1992; 12: 253–266.Google Scholar
  32. 32.
    Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a “gold standard”.Am J Clin Nutr 1993; 58: 589–591.Google Scholar
  33. 33.
    Horber FF, Thomi F, Casez JP, Fonteille J, Jaeger P. Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis.Br J Radiol 1992; 65: 895–900.Google Scholar
  34. 34.
    Going SB, Massett MP, Hall MC, Bare LA, Root PA, Williams DP, Lohman TG. Detection of small changes in body composition by dual-energy x-ray absorptiometry.Am J Clin Nutr 1993; 57: 845–850.Google Scholar
  35. 35.
    Laskey MA, Lyttle KD, Flaxman ME, Barber RW. The influence of tissue depth and composition on the performance of the Lunar dual-energy X-ray absorptiometer whole-body scanning mode.Eur J Clin Nutr 1992; 46: 39–45.Google Scholar
  36. 36.
    Jebb SA, Goldberg GR, Jennings G, Elia M. Dual-energy X-ray absorptiometry measurements of body composition: effects of depth and tissue thickness, including comparisons with direct analysis.Clin Sci 1995; 88: 319–324.Google Scholar
  37. 37.
    Jensen MD, Braun JS, Vetter RJ, Marsh HM. Measurement of body potassium with a whole-body counter: relationship between lean body mass and resting energy expenditure.Mayo Clin Proc 1988; 63: 864–868.Google Scholar
  38. 38.
    Pierson RN Jr, Wang J, Thornton JC, Van Itallie TB, Colt EWD. Body potassium by four-pi40K counting: an anthropometric correction.Am J Physiol 1984; 246: F234-F239.Google Scholar
  39. 39.
    Forbes GB, Gallup J, Hursh JB. Estimation of total body fat from potassium-40 content.Science 1961; 133: 101–102Google Scholar
  40. 40.
    Pierson RN, Lin DHY, Phillips RA. Total body potassium in health: effects of age, sex, height and fat.Am J Physiol 1974; 226: 206–212.Google Scholar
  41. 41.
    Wang J, Pierson RN Jr. Disparate hydration of adipose and lean tissue require a new model for body water distribution in man.J Nutr 1976; 106: 1687–1693.Google Scholar
  42. 42.
    Jensen MD, Martin ML, Kanaley JA. Fat associated water: implications for body composition assessment.Clin Res 1991; 39: 205A.Google Scholar
  43. 43.
    Cohn SH, Vaswani AN, Yasumura S, Yuen K, Ellis KJ. Assessment of cellular mass and lean body mass by noninvasive nuclear techniques.J Lab Clin Med 1985; 105: 305–311.Google Scholar
  44. 44.
    Miller ME, Cosgriff JM, Forbes GB. Bromide space determination using anion-exchange chromatography for measurement of bromide.Am J Clin Nutr 1989; 50: 168–171.Google Scholar
  45. 45.
    Marken Lichtenbelt WD van, Kester ADM, Baarends EM, Westerterp KR. Extracellular water determination by bromide dilution: optimal equilibration time [abstract].Int J Obes 1995; 19(S2); 49.Google Scholar
  46. 46.
    Beddoe AH, Hill GL. Clinical measurement of body composition using in vivo neutron activation analysis.J Parenter Enteral Nutr 1985; 9: 504–520.Google Scholar
  47. 47.
    Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged 16–72 years.Br J Nutr 1974; 32: 77–97.Google Scholar
  48. 48.
    Frost GS, Corish C. Reproducibility of upper-arm anthropometry in subjects of differing body mass.J Hum Nutr Diet 1989; 2: 403–406.Google Scholar
  49. 49.
    Heymsfield SB, Olafson RP, Kutner MH, Nixon DW. A radiographic method of quantifying protein-calorie malnutrition.Am J Clin Nutr 1979; 32: 693–702.Google Scholar
  50. 50.
    Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area.Am J Clin Nutr 1982; 36: 680–690.Google Scholar
  51. 51.
    Presta E, Wang J, Harrison GG, Björntorp P, Harker WH, Van Itallie TB. Measurement of total body electrical conductivity: a new method for estimation of body composition.Am J Clin Nutr 1983; 37: 735–739.Google Scholar
  52. 52.
    Van Loan M, Mayclin P. A new TOBEC instrument and procedure for the assessment of body composition: use of Fourier coefficients to predict lean body mass and total body water.Am J Clin Nutr 1987; 45: 131–137.Google Scholar
  53. 53.
    Fuller NJ, Jebb SA, Goldberg GR, Pullicino E, Adams C, Cole TJ, Elia M. Inter-observer variability in the measurement of body composition.Eur J Clin Nutr 1991; 45: 43–49.Google Scholar
  54. 54.
    Segal KR, Burastero S, Chun A, Coronel P, Pierson RN Jr, Wang J. Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement.Am J Clin Nutr 1991; 54: 26–29.Google Scholar
  55. 55.
    Seidell JC, Bakker CJG, van der Kooy K. Imaging techniques for measuring adipose-tissue distribution — a comparison between computed tomography and 1.5-T magnetic resonance.Am J Clin Nutr 1990; 51: 953–957.Google Scholar
  56. 56.
    Conway JM, Norris KH, Bodwell CE. A new approach for the estimation of body composition: infrared interactance.Am J Clin Nutr 1984; 40: 1123–1130.Google Scholar
  57. 57.
    Elia M, Parkinson SA, Diaz E. Evaluation of near infra-red interactance as a method for predicting body composition.Eur J Clin Nutr 1990; 44: 113–121.Google Scholar
  58. 58.
    Elia M. Body composition analysis: an evaluation of 2 component models, multicomponent models and bedside techniques.Clin Nutr 1992; 11: 114–127.Google Scholar
  59. 59.
    Keys A, Brozek J. Body fat in adult man.Physiol Rev 1953; 33: 245–325.Google Scholar
  60. 60.
    Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, eds.Techniques for measuring body composition. Washington DC: Natinal Academy of Sciences, National Research Council, 1961: 223–244.Google Scholar
  61. 61.
    Lohman TG. Research progress in validation of laboratory methods of assessing body composition.Med Sci Sports Exerc 1984; 16: 596–603.Google Scholar
  62. 62.
    Heymsfield SB, Lichtman S, Baumgartner RN, Wang J, Kamen Y, Aliprantis A, Pierson RN Jr. Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure.Am J Clin Nutr 1990; 52: 52–58.Google Scholar
  63. 63.
    Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. Fourcomponent model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass.Clin Sci 1992; 82: 687–693.Google Scholar
  64. 64.
    Oldroyd B, Bramley PN, Stewart SP, Simpson M, Truscott JG, Losowsky MS, Smith MA. A four-compartment model to determine body composition in liver cirrhosis. In: Ellis KJ, Eastman JD, eds.Human body composition. New York: Plenum Press; 1993: 221–224.Google Scholar
  65. 65.
    Crawford DHG, Shepherd RW, Halliday JW, Cooksley GWGE, Golding SD, Cheng WSC, Powell LW. Body composition in nonalcoholic cirrhosis: the effect of disease etiology and severity on nutritional compartments.Gastroenterology 1994; 106: 1611–1617.Google Scholar
  66. 66.
    Simko V, Connell AM, Banks B. Nutritional status in alcoholics with and without liver disease.Am J Clin Nutr 1982; 35: 197–203.Google Scholar
  67. 67.
    Mills PR, Shenkin A, Anthony RS, McLelland AS, Main ANH, MacSween RNM, Russell RI. Assessment of nutritional status and in vivo immune responses in alcoholic liver disease.Am J Clin Nutr 1983; 38: 849–859.Google Scholar
  68. 68.
    Mendenhall CL, Anderson S, Weesner RE, Goldberg SJ, Crolic KA, Protein-calorie malnutrition associated with alcoholic hepatitis.Am J Med 1984; 76: 211–222.Google Scholar
  69. 69.
    Cabré E, Gonzalez-Huix F, Abad-Lacruz A, Esteve M, Acero D, Fernandez-Bañares F, Xiol X, Gassull MA. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomised controlled trial.Gastroenterology 1990; 98: 715–720.Google Scholar
  70. 70.
    Wood B, Nicholls KM, Breen KJ. Nutritional status in alcoholism.J Hum Nutr Diet 1992; 5: 275–285.Google Scholar
  71. 71.
    Thuluvath PJ, Triger DR. Evaluation of nutritional status by using anthropometry in adults with alcoholic and nonalcoholic liver disease.Am J Clin Nutr 1994; 60: 269–273.Google Scholar
  72. 72.
    Jhangiani SS, Agarwal N, Holmes R, Cayten CG, Pitchumoni CS. Energy expenditure in chronic alcoholics with and without liver disease.Am J Clin Nutr 1986; 44: 323–329.Google Scholar
  73. 73.
    Merli M, Riggio O, Romiti A, Ariosto F, Mango L, Pinto G, Savioli M, Capocaccia L. Basal energy production rate and substrate use in stable cirrhotic patients.Hepatology 1990; 12: 106–112.Google Scholar
  74. 74.
    Dolz C, Raurich JM, Ibáñez J, Obrador A, Marsé P, Gayá J. Ascites increases the resting energy expenditure in liver cirrhosis.Gastroenterology 1991; 100: 738–744.Google Scholar
  75. 75.
    Green JH, Bramley PN, Losowsky MS. Are patients with primary biliary cirrhosis hypermetabolic? A comparison between patients before and after liver transplantation and controls.Hepatology 1991; 14: 464–472.Google Scholar
  76. 76.
    Müller MJ, Fenk A, Lautz HU, Selberg O, Canzler H, Balks HJ, von zur Mühlen A, Schmidt E, Schmidt FW. Energy expenditure and substrate metabolism in ethanol-induced liver cirrhosis.Am J Physiol 1991; 260: E338–344.Google Scholar
  77. 77.
    Campillo B, Bories PN, Devanlay M, Sommer F, Wirquin E, Fouet P. The thermogenic and metabolic effects of food in liver cirrhosis: consequences on the storage of nutrients and the hormonal counterregulatory response.Metabolism 1992; 41: 476–482.Google Scholar
  78. 78.
    Müller MJ, Lautz HU, Plogmann B, Bürger M, Körber J, Schmidt FW. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state.Hepatology 1992; 15: 782–794.Google Scholar
  79. 79.
    McCullough AJ, Mullen KD, Kalhan SC. Body cell mass and leucine metabolism in cirrhosis.Gastroenterology 1992; 102: 1325–1333.Google Scholar
  80. 80.
    Guglielmi FW, Contento F, Laddaga L, Panella C, Francavilla A. Bioelectrical impedance analysis: experience with male patients with cirrhosis.Hepatology 1991; 13: 892–895.Google Scholar
  81. 81.
    Bramley P, Oldroyd B, Stewart S, Simpson M, Truscott J, Losowsky M, Smith M. Body composition analysis in liver cirrhosis. The measurement of body fat by dual energy X-ray absorptiometry in comparison to skinfold anthropometry, bioelectrical impedance and total body potassium. In: Ellis KJ, Eastman JD, eds.Human body composition. New York: Plenum Press; 1993: 211–214.Google Scholar
  82. 82.
    Wicks C, Bray GP, Williams R. Nutritional assessment in primary biliary cirrhosis: the effect of disease severity.Clin Nutr 1995; 14: 29–34.Google Scholar
  83. 83.
    McCullough AJ, Mullen KD, Kalhan SC. Measurements of total body and extracellular water in cirrhotic patients with and without ascites.Hepatology 1991; 14: 1102–1111.Google Scholar
  84. 84.
    Bishop CW, Bowen PE, Ritchey SJ. Norms for nutritional assessment of American adults by upper arm anthropometry.Am J Clin Nutr 1981; 34: 2530–2539.Google Scholar
  85. 85.
    Jelliffe DB. The assessment of nutritional status of the community (with special reference to field surveys in developing regions of the world).WHO Monograph Series 1966; 53: 3–271.Google Scholar
  86. 86.
    Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status.Am J Clin Nutr 1981; 34: 2540–2545.Google Scholar
  87. 87.
    Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices.Br J Surg 1973; 60: 646–649.Google Scholar
  88. 88.
    Bruce A, Anderson M, Arvidsson B, Isaksson B. Body composition: prediction of normal body potassium, body water and body fat in adults on the basis of body height, body weight and age.Scand J Clin Lab Invest 1980; 40: 461–473.Google Scholar
  89. 89.
    Morgan MY. Lactitol for the treatment of hepatic encephalopathy. In: Conn HO, Bircher J, eds.Hepatic encephalopathy: syndromes and therapies. Bloomington Ill.: Medi-Ed Press; 1994: 243–264.Google Scholar
  90. 90.
    Conn HO, Bircher J. Adverse reactions and side-effects of lactulose and related agents. In: Conn HO, Bircher J, eds.Hepatic encephalopathy: syndromes and therapies. Bloomington, Ill.: Medi-Ed Press, 1994: 299–310.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Marsha Y. Morgan
    • 1
  • Angela M. Madden
    • 1
  1. 1.University Department of MedicineThe Royal Free Hospital and School of MedicineLondonUK

Personalised recommendations