Skip to main content
Log in

Distribution of transcribable DNA sequences in mouse liver hepatoma chromatin

  • Review and General Articles
  • b. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Shearing in either a Virtis small or large volume capacity cup under defined conditions gave chromatin fragment size distribution upon agarose exclusion column chromatography (50 × 106) that varied inversely with shear time. The large- and small-sized chromatin fragments possessed high template capacity while the intermediate fragments (the majority) had relatively low template capacity; the differences in template capacity of these size groups varying inversely with the shear time. The protein/DNA and RNA/DNA ratios remained relatively constant in all size groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Frenster, V. G. Allfrey and A. E. Mirsky, Proc. Nat. Acad. Sci. U.S. 50, 1026–1032 (1963).

    Google Scholar 

  2. J. H. Frenster, Nature 206, 680–683 (1965).

    Google Scholar 

  3. J. J. Yunis and W. G. Yasmineh, Science 168, 263–265 (1970).

    Google Scholar 

  4. B. J. McCarthy and J. D. Duerksen, in Transcription of Genetic Material. Cold Spring Harbor Symposia on Quantitative Biology Vol. XXXV, pp. 621–627 (1970).

  5. J. D. Duerksen and B. J. McCarthy, Biochem. 10, 1471–1478 (1971).

    Google Scholar 

  6. B. L. McConaughy and B. J. McCarthy, Biochem. 11, 998–1003 (1972).

    Google Scholar 

  7. M. Janowski, D. S. Nasser and B. J. McCarthy, in Karolinska Symposium on Gene Transcription in Reproductive Tissue (Diczfalusy, E., ed) Acta Endocrinol. Suppl. 168, pp. 112–129.

  8. R. Chalkley and R. H. Jensen, Biochem. 7, 4380–4388 (1968).

    Google Scholar 

  9. J. T. Nishiura, Ph.D. Dissertation, Department of Genetics, University of Washington, Seattle, Wash. (1972).

  10. E. C. Murphy, Jr., S. H. Hall, J. H. Shepherd and R. S. Weiser, Biochem. 12, 3843–3853 (1973).

    Google Scholar 

  11. G. R. Reeck, R. T. Simpson and H. A. Sober, Proc. Nat. Acad. Sci. U.S. 69, 2317–2321 (1972).

    Google Scholar 

  12. R. T. Simpson and G. R. Reeck, Biochem. 12, 3853–3858 (1973).

    Google Scholar 

  13. H. S. Taper, G. W. Woolley, M. N. Teller and M. P. Lardis, Cancer Res. 26, 143–148 (1966).

    Google Scholar 

  14. J. R. Kongsvik and L. Messineo, Arch. Biochem. Biophys. 136, 160–166 (1970).

    Google Scholar 

  15. J. Bonner, G. R. Chalkley, M. Dahmus, D. Frambrough, F. Fujimoto, R. C. Huang, J. Huberman, R. Jensen, K. Marushige, H. Ohlenbusch, B. Olivera, and J. Widholm, in Methods in Enzymology (Colowick, S. P., Kaplan, N. O., Grossman, L. and Moldave, K., eds) Vol. XIIB, pp. 3–65, Academic Press, New York (1968).

    Google Scholar 

  16. W. C. Schneider, in Methods in Enzymology (Colowick, S. P., Kaplan, N. O., eds) Vol. 3, pp. 680–684, Academic Press, New York (1957).

    Google Scholar 

  17. O. H. Lowry, N. J. Rosenbrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  18. R. R. Burgess, J. Biol. Chem. 244, 6160–6167 (1969).

    Google Scholar 

  19. R. G. Roeder and W. J. Rutter, Biochem. 9, 2543–2553 (1970).

    Google Scholar 

  20. P. H. W. Butterworth, R. F. Cox and C. J. Chesterton, Eur. J. Biochem. 23, 229–241 (1971).

    Google Scholar 

  21. R. J. Clark and G. Felsenfeld, Nature New Biol. 229, 101–108 (1971).

    Google Scholar 

  22. J. Paul and R. S. Gilmour, J. Mol. Biol. 16, 242–244 (1966).

    Google Scholar 

  23. J. Paul and R. S. Gilmour, J. Mol. Biol. 34, 305–316 (1968).

    Google Scholar 

  24. J. Paul and R. S. Gilmour, J. Mol. Biol. 40, 137–139 (1969).

    Google Scholar 

  25. R. C. C. Huang and P. C. Huang, J. Mol. Biol. 39, 365–378 (1969).

    Google Scholar 

  26. I. Bekhor, G. M. Kung and J. Bonner, J. Mol. Biol. 39, 351–364 (1969).

    Google Scholar 

  27. K. D. Smith, R. B. Church and B. J. McCarthy, Biochem. 8, 4271–4277 (1969).

    Google Scholar 

  28. R. S. Gilmour and J. Paul, Proc. Nat. Acad. Sci. U.S. 70, 3440–3442 (1973).

    Google Scholar 

  29. T. Y. Shih, G. Khoury and M. A. Martin, Proc. Nat. Acad. Sci. U.S. 70. 3506–3510 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duerksen, J.D. Distribution of transcribable DNA sequences in mouse liver hepatoma chromatin. Mol Cell Biochem 4, 197–203 (1974). https://doi.org/10.1007/BF01731481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731481

Keywords

Navigation