Molecular and Cellular Biochemistry

, Volume 4, Issue 3, pp 181–187 | Cite as

Stable, high capacity and non charged agarose derivatives for immobilization of biologically active compounds and for affinity chromatography

  • Meir Wilchek
  • Talia Miron
Review and General Articles a. review articles

Summary

Methods are described for the preparation of hydrazido-alkyl agarose derivatives useful for purification of biologically active compounds by affinity chromatography. The hydrazido-agarose permits the attachment of different functional groups through non-charged extended hydrocarbon spacers. These spacers place the functional groups at varying distances from the gel matrix. The different functional groups introduced, enable the coupling of ligands to agarose through their amino, carboxyl, imidazole, phenol and thiol groups.

The problem of leakage of functional groups when attached via monovalent coupled spacers was overcome by coupling polyglutamic acid hydrazide or linear polyacrylic hydrazide to agarose. The high stability obtained results from the multipoint attachment of the polymers to agarose. The polyhydrazidoagarose was also used for further derivatization.

Keywords

Phenol Agarose Hydrocarbon Carboxyl Thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Cuatrecasas, M. Wilchek and C. B. Anfinsen, Proc. Nat. Acad. Sci. U.S. 61, 636–643 (1968).Google Scholar
  2. 2.
    J. Porath, R. Axen and S. Ernback, Nature 215, 1491–1492 (1967).Google Scholar
  3. 3.
    P. Cuatrecasas, J. Biol. Chem., 345, 3059–3065 (1970).Google Scholar
  4. 4.
    R. Axen, P. A. Myrin and J. C. Janson, Biopolymers 9, 401–413 (1970).Google Scholar
  5. 5.
    B. Svensson, FEBS Letters 29, 167–169 (1973).Google Scholar
  6. 6.
    R. Jost, T. Miron and M. Wilchek, Biochem. Biophys. Acta, in press (1974).Google Scholar
  7. 7.
    B. H. J. Hofstee, Biochem. Biophys. Res. Commun. 50, 751–757 (1973).Google Scholar
  8. 8.
    B. H. J. Hofstee, Biochem. Biophys. Res. Commun. 53, 1137–1144 (1973).Google Scholar
  9. 9.
    Z. Er-el, Y. Zaidenzaig and S. Shaltiel, Biochem. Biophys. Res. Commun. 49, 383–390 (1972).Google Scholar
  10. 10.
    S. Shaltiel and Z. Er-el, Proc. Nat. Acad. Sci. U.S. 70, 778–781 (1973).Google Scholar
  11. 11.
    R. Lamed, Y. Levin and M. Wilchek, Biochim. Biophys. Acta 304, 231–235 (1973).Google Scholar
  12. 12.
    M. Wilchek and R. Lamed, Method Enzymol. 34B (in press) (1974).Google Scholar
  13. 13.
    G. I. Tesser, H. U. Fisch and R. Schwyzer, FEBS Letters 23, 56–58 (1973).Google Scholar
  14. 14.
    J. Kovacs, V. Bruckner and K. Kovacs, J. Chem. Soc. 145–147 (1953).Google Scholar
  15. 15.
    J. Porath, K. Aspberg, H. Drevin and R. Axen, J. Chromat. 86, 53–56 (1973).Google Scholar
  16. 16.
    J. K. Inman and M. M. Dintzis, Biochemistry 8, 4074–4082 (1969).Google Scholar
  17. 17.
    J. B. Robbins, J. Haimovich and M. Sela, Immunochem. 4, 11–22 (1967).Google Scholar
  18. 18.
    D. L. Robberson and N. Davidson, Biochemistry 11, 533–537 (1972).Google Scholar
  19. 19.
    W. Van Kern, T. Hucke, R. Hollander and R. Schneider, Die Makromoleckulare Chemie 22, 31–37 (1957).Google Scholar
  20. 20.
    D. G. Knorr, S. D. Misima and L. C. Sandachtchiev, Izvestia Sibirskovo Otdelessia Akademiy Nauk Seria Chimicheskich Nauk, 11, 134–139 (1964).Google Scholar
  21. 21.
    M. Wilchek and M. Rotman, Israel J. Chem. 8, 127p (1970).Google Scholar
  22. 22.
    P. A. S. Smith, in The Chemistry of Open Chain Organic Nitrogen Compounds, Vol. II, pp. 173–210. W. A. Benjamin Inc., N.Y. (1966).Google Scholar
  23. 23.
    M. Wilchek, FEBS Letters 33, 70–72 (1973).Google Scholar
  24. 24.
    M. Wilchek, Proc. 9th Intern. Congr. Biochem, Stockholm, p. 9 (1973).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1974

Authors and Affiliations

  • Meir Wilchek
    • 1
  • Talia Miron
    • 1
  1. 1.Department of BiophysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations