Molecular and Cellular Biochemistry

, Volume 5, Issue 3, pp 161–171 | Cite as

Regulatory properties of the constitutive hexose transport in saccharomyces cerevisiae

  • Ramón Serrano
  • Gertrudis Delafuente
Review and General Articles b. general articles


  1. 1.

    Saturation curves for the initial rates of uptake of non-fermentable sugars and for fermentable ones in normal and iodoacetate-treated cells have been obtained with baker's yeast harvested in log phase. The Km values for each of the sugars tested were found to be 2 to 10 times lower in the presence of fermentation than in its absence. The same effect has been observed in efflux measurements.

  2. 2.

    The kinetic properties of transport under conditions in which the latter is largely inactivated by uranyl ions are similar to those in untreated cells in the case of glucose and fructose and markedly different in the case of mannose.

  3. 3.

    The saturation curves appear biphasic in double reciprocal plots under certain conditions (for instance, cells treated with iodoacetic acid and uranyl ions, or cells washed a few seconds after their contact with sugars). Under these conditions two Km values have been calculated for glucose, mannose and xylose.

  4. 4.

    In steady fermentation of mannose, whose transport seems to be in large potential excess over phosphorylation, the intracellular concentration of free sugar is nevertheless much lower than that corresponding to equilibration by an excess of transport over phosphorylation. In cells in which hexokinase activity is depleted by treatment with xylose, mannose accumulates to near equilibrium levels with the outside sugar.

  5. 5.

    The kinetics of aerobic fermentation of glucose in respiring cells show an apparent Km one order of magnitude higher than that corresponding to anaerobic fermentation.

  6. 6.

    The above observations are interpreted as indicating that the constitutive transport system for sugars can exist in two states showing different affinities for sugars. In the absence of fermentation or in aerobic fermentation in respiring cells the state of higher Km prevails, while in the presence of anaerobic fermentation the state of lower Km prevails. Under certain conditions the two states can coexist to the point of giving rise to biphasic saturation curves. The evidence for two affinity states in the carrier and the fact that mannose is fermented at the same maximal rate as glucose or fructose, in spite of the marked differences in their kinetic parameters of transport and phosphorylation, are interpreted as consistent with the hypothesis of the existence of a regulatory feed-back mechanism responsive to the level of an intermediary metabolite of glycolysis.



Xylose Fructose Mannose Hexokinase Saturation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Burger, L. Hejmová and A. Kleinzeller, Biochem. J. 71, 233–242 (1959).Google Scholar
  2. 2.
    V. P. Cirillo, in Intern. Symp. on Membrane Transport and Metab. (A. Kleinzeller and A. Kotyk, eds.), p. 343, Academic Press Inc. London & New York (1961).Google Scholar
  3. 3.
    C. F. Heredia, A. Sols and G. DelaFuente, Eur. J. Biochem. 5, 321–329 (1968).Google Scholar
  4. 4.
    V. P. Cirillo, J. Bacteriol. 95, 603–611 (1968).Google Scholar
  5. 5.
    P. O. Wilkins, J. Bacteriol. 93, 1565–1570 (1967).Google Scholar
  6. 6.
    A. Kotyk, Fol. Microbiol. 12, 121–131 (1967).Google Scholar
  7. 7.
    J. van Steveninck and A. Rothstein, J. Gen. Physiol. 49, 235–246 (1965).Google Scholar
  8. 8.
    A. Kleinzeller and A. Kotyk, in Aspects of Yeast Metabolism (A. K. Mills, ed.) pp. 33–45, Blackwell Scientific Publications, Oxford (1967).Google Scholar
  9. 9.
    A. Sols (1967) in Aspects of Yeast Metabolism (A. K. Mills, ed.) pp. 47–66, Blackwell Scientific Publications, Oxford (1967).Google Scholar
  10. 10.
    G. DelaFuente and A. Sols, Eur. J. Biochem. 16, 234–239 (1970).Google Scholar
  11. 11.
    A. Sols, C. Gancedo and G. DelaFuente, in The Yeasts (A. H. Rose and J. S. Harrison, eds.) Vol. 2, pp. 271–307, Academic Press, London (1971).Google Scholar
  12. 12.
    A. Sols, G. DelaFuente, E. Viñuela and C. F. Heredia, Biochem. J. 89, 33P (1963).Google Scholar
  13. 13.
    R. Serrano and G. DelaFuente, FEBS Meet. Abstr. 8th, No. 42, Amsterdam (1972).Google Scholar
  14. 14.
    G. DelaFuente, Eur. J. Biochem. 16, 240–243 (1970).Google Scholar
  15. 15.
    V. S. Waravdekar and L. Saslaw, J. Biol. Chem. 234, 1945–1950 (1959).Google Scholar
  16. 16.
    V. P. Cirillo, P. O. Wilkins and J. Anton, J. Bacteriol. 86, 1259–1264 (1963).Google Scholar
  17. 17.
    O. H. Lowry, N. J. Rosebrough, A. C. Farr and R. J. Randall, J. Biol. Chem. 193, 265–275 (1951).Google Scholar
  18. 18.
    J. Jayaraman, C. Cotman, H. R. Mahler and C. V. Sharp, Arch. Biochem. Biophys. 116, 224–251 (1966).Google Scholar
  19. 19.
    R. Serrano, J. M. Gancedo and C. Gancedo, Eur. J. Biochem. 34, 479–482 (1973).Google Scholar
  20. 20.
    V. P. Cirillo, J. Bacteriol. 84, 485–491 (1962).Google Scholar
  21. 21.
    G. Avigad, Biochim. Biophys. Acta 40, 124–134 (1960).Google Scholar
  22. 22.
    A. Rothstein, R. Meier and L. Hurwitz, J. Cell Comp. Physiol. 38, 245–270 (1951).Google Scholar
  23. 23.
    M. E. Utter, E. A. Duell and C. Bernofsky, in Aspects of Yeast Metabolism (A. K. Mills, ed.) pp. 197–212, Blackwell Scientific Publications, Oxford (1967).Google Scholar
  24. 24.
    A. Kotyk, Biochim. Biophys. Acta 135, 106–111 and 112–119 (1967).Google Scholar
  25. 25.
    P. O. Wilkins and V. P. Cirillo, J. Bacteriol. 90, 1605–1610 (1965).Google Scholar
  26. 26.
    E. Spoerl, J. P. Williams and S. H. Benedict, Biochim. Biophys. Acta 298, 956–966 (1973).Google Scholar
  27. 27.
    F. Lynen, G. Hartmann, K. F. Netter and A. Schvegraf, (1959) in CIBA Foundation Symposium on the Regulation of Cell Metabolism (G. E. W. Wolstenholme and C. M. O'Connor, eds.) pp. 256–273, J. & A. Churchill Ltd. London (1959).Google Scholar
  28. 28.
    L. H. Stickland, Biochem. J. 64, 503–515 (1956).Google Scholar
  29. 29.
    A. Kotyk and A. Kleinzeller, Biochim. Biophys. Acta 135, 106–111 (1967).Google Scholar
  30. 30.
    M. L. Salas, E. Viñuela, M. Salas and A. Sols, Biochem. Biophys. Res. Commun. 19, 371–376 (1965).Google Scholar
  31. 31.
    F. Azam and A. Kotyk, FEBS Letters 2, 333–335 (1969).Google Scholar
  32. 32.
    J.-U. Becker and A. Betz, Biochim. Biophys. Acta 274, 584–597 (1972).Google Scholar
  33. 33.
    P. K. Maitra and Z. Lobo, J. Biol. Chem. 246, 475–488 and 489–499 (1971).Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1974

Authors and Affiliations

  • Ramón Serrano
    • 1
  • Gertrudis Delafuente
    • 1
  1. 1.Instituto de Enzimología del C.S.I.C., Departamento de BioquímicaFacultad de Medicina de la Universidad Autónoma de MadridSpain

Personalised recommendations