Advertisement

Klinische Wochenschrift

, Volume 66, Issue 18, pp 946–952 | Cite as

Verlust der renalen Funktionsreserve nach Nierentransplantation und bei Patienten mit fortgeschrittenen Leberfunktionsstörungen

  • T. Eisenhauer
  • J. Talartschik
  • H. Hartmann
  • E. Quentin
  • F. Scheler
Article

Zusammenfassung

Zur Ermittlung der renalen Funktionsreserve wurden periodische, simultane Messungen der Inulin-, Kreatinin- und PAH-Clearance während einer 2-stündigen intravenösen Infusion einer 10%-igen Aminosäurenlösung (Aminosteril KE 10%) durchgeführt.

Bei 10 nierengesunden Probanden stieg die glomeruläre Filtrationsrate (GFR) während der Aminosäureninfusion um etwa 35% an (Inulin-Clearance basal 107±6 auf 144±7 ml/min), der renale Plasmafluß (RPF) um 27% (PAH-Clearance basal von 530±25 auf 675±40 ml/min). Im Gegensatz dazu zeigte sich bei einem Kollektiv von 8 nierentransplantierten Patienten mit guter, stabiler Transplantatfunktion (Kreatinin-Clearance über 65 ml/min) keine Steigerung der GFR und des RPF nach intravenöser Aminosäurenzufuhr. 10 Patienten mit schweren Leberfunktionsstörungen und normaler Nierenfunktion (24-Stunden-Kreatinin-Clearance über 100 ml/min) wiesen nach Aminosäureninfusion gleichfalls keine Zunahme der renalen Durchblutung und der glomerulären Filtrationsrate auf.

Der Verlust der durch Aminosäureninfusion aufzeigbaren renalen Funktionsreserve bei nierentransplantierten Patienten weist auf eine Hyperfiltration der Transplantatniere hin und ist für die Langzeitprognose transplantierter Patienten zu beachten. Eine intakte Leberfunktion erscheint notwendig für die Aminosäuren-induzierte Steigerung der glomerulären Filtrationsrate.

Schlüsselwörter

Renale Funktionsreserve Glomeruläre Filtrationsrate Aminosäuren Nierentransplantation Leberfunktion 

Loss of renal functional reserve after kidney transplantation and in patients with severe impairment of liver function

Summary

Renal functional reserve capacity was evaluated in healthy controls, kidney transplant recipients and patients with impaired liver function by simultaneous measurements of periodic clearances of inuline, PAH and creatinine every 30 minutes before, during and after infusion of an aminoacid (AA) solution.

During AA infusion glomerular filtration rate rose in 10 healthy controls to about 35% above basal values (inulin clearance from 107±6 to 144±7 ml/min,p⩽0.0005), renal plasma flow increased by 27% (PAH clearance from 530±25 to 675±40 ml/min,p⩽0.002).

8 renal transplant recipients with good and stable renal function (creatinine clearance above 65 ml/min) showed no rise in GFR and RPF, as did 10 patients with severe impairment of liver function and normal basal kidney function (creatinine clearance above 100 ml/min).

The lack of a renal functional reserve in kidney transplant recipients might indicate a hyperfiltration of the transplanted kidney. This could affect the longtime prognosis of these patients.

The liver seems to play a role in the mediation of the aminoacid-induced rise of GFR, supporting the hypothesis of a putative liver hormone regulating GFR after protein ingestion or AA infusion.

Key words

Renal functional reserve Glomerular filtrationrate Amino acids Kidney transplantation Liver function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alvestrand A, Bergström J (1984) Glomerular hyperfiltration after protein ingestion, during glucagon infusion, and in insulin dependent diabetes is induced by a liver hormone: Deficient production of this hormon in hepatic failure causes hepatorenal syndrome. Lancet I:195–197Google Scholar
  2. 2.
    Bacley C, Alexandre GPJ, van Ypersele de Strihou C (1976) Hypertension after renal transplantation. Brit Med J 2:1287–1289Google Scholar
  3. 3.
    Beukhof HR, ter Wee PM, Sluiter WJ, Donker AJM (1985) Effect of low-dose dopamin on effective renal plasma flow and glomerular filtration rate in 32 patients with IGA glomerulopathy. Am J Nephrol 5:267–270Google Scholar
  4. 4.
    Bosch JP, Lauer A, Glabman S (1984) Short-term protein loading in assessment of renal function in patients with renal disease. Am J Med 77:873–879Google Scholar
  5. 5.
    Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S (1983) Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 75:943–950Google Scholar
  6. 6.
    Brenner BM, Meyer TW (1984) Mechanisms of progression of renal disease. In: Nephrology, Vol II: Proceedings of the IXth International Congress on Nephrology, pp 1233–1246Google Scholar
  7. 7.
    Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease. The role of haemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation and intrinsic renal disease. N Engl J Med 307:652–659Google Scholar
  8. 8.
    Castellino P, Haut W, De Fronzo RA (1987) Regulation of renal hemodynamics by plasma aminoacid and hormone concentrations. Kidney Int 32, S15-S20Google Scholar
  9. 9.
    Cheigh JS, Soliman M, Mourandian J, Tapia L, Riggio RR, Stubenbord W, Stenzel KH, Rubin AL (1981) Focal segmental glomerulosclerosis in kidney transplants: incidence, pathogenesis and significance. Transplant Proc 13:125–127Google Scholar
  10. 10.
    Corvilain J, Abramow M (1962) Some effects of growth hormone on renal hemodynamics and tubular phosphate transport in man. J Clin Invest 41:1230–1235Google Scholar
  11. 11.
    Davidson EW, Dunn MJ (1987) Pathogenesis of the hepatorenal syndrome. Ann Rev Med 38:361–372Google Scholar
  12. 12.
    Davison JM, Dunlop W (1980) Renal hemodynamics and tubular function in normal human pregnancy. Kidney Int 18:152–161Google Scholar
  13. 13.
    Dhaene M, Sabot JP, Philipart Y, Doutrelpont JM, Vanherweghen JL (1987) Effects of acute protein loads of different sources on glomerular filtration rate. Kidney Int 32:S22, S25-S28Google Scholar
  14. 14.
    Dratwa M, Burette A, Van Gossum M, Collart F, Wens R, Charlier L, Tielemans C, Dettenre M (1987) No rise in glomerular filtration rate after protein loading in cirrhotics. Kidney Int 32:S22, S32-S34Google Scholar
  15. 15.
    Eisenhauer T, Scholz K, Scheler F (1985) Increase of glomerular filtration rate following aminoacid infusion is suppressed by indomethacin in normal subjects. Proc Eur Dial Transplant Assoc Eur Ren Assoc 22:1049–1053Google Scholar
  16. 16.
    Garcia DL, Rennke HG, Brenner BM, Anderson S (1987) Chronic glucocorticoid therapy amplifies glomerular injury in rats with renal ablation. J Clin Invest 80:867–874Google Scholar
  17. 17.
    Graf H, Stumanvoll HK, Luger A, Prager R (1983) Effect of amino acid infusion on glomerular filtration rate. N Engl J Med 308:159–160Google Scholar
  18. 18.
    Groszman R (1983) The measurement of liver blood flow using clearance techniques. Hepatology 3:1039–1040Google Scholar
  19. 19.
    Iwatsuki S, Popovtzer MM, Corman JL, Ishikawa M, Putnam CW (1973) Recovery from “hepatorenal syndrome” after orthotopic liver transplantation. N Engl J Med 289:1155–1159Google Scholar
  20. 20.
    Johannesen L, Lie M, Kiil F (1977) Effect of glycine and glucagon on glomerular filtration and renal metabolic rates. Am J Physiol 233:F61-F66Google Scholar
  21. 21.
    Kahan BD, Flechner SM, Lorber MI, Golden B, Conley S, Van Buren CT (1987) Complications of cyclosporine-prednisone immunosuppression in 402 renal allograft recipients exclusively followed at a single center for from one to five years. Transplantation 43:197–204Google Scholar
  22. 22.
    Koppel MH, Coburn JW, Mims MM, Goldstein H, Boylw JD, Rubini ME (1969) Transplantation of cadaveric kidneys from patients with hepatorenal syndrome. Evidence for the functional nature of renal failure in advanced liver disease. N Engl J Med 280/25:1367–1371Google Scholar
  23. 23.
    Kramer P, Köthe E, Girndt J (1974) Konventionelle Clearanceverfahren. Stand und Bedeutung. Mitteilungen der Arbeitsgemeinschaft für Klinische Nephrologie eV, Bundesrepublik Deutschland und West-Berlin 3:25–56Google Scholar
  24. 24.
    Maack T, Johnson V, Tate SS, Meister A (1974) Effects of amino-acid (AA) on the function of the isolated perfused rat kidney. Fed Proc 33:305Google Scholar
  25. 25.
    Mizuiri S, Hayashi J, Ozawa T, Hirata K, Takano M, Sasaki Y (1988) Effects of an oral protein load in glomerular filtration rate in healthy controls and nephrotic patients. Nephron 48:101–106Google Scholar
  26. 26.
    Neugarten J, Feiner HD, Schacht RG, Gallo GR, Baldwin DS (1982) Aggravation of experimental glomerulonephritis by superimposed clip hypertension. Kidney Int 22:257–263Google Scholar
  27. 27.
    Parving HH, Noer J, Kehdet H, Mogensen CE, Sevendsen PA, Heding L (1977) The effect of short-term glucagon infusion on kidney function in normal man. Diabetologia 13:323–325Google Scholar
  28. 28.
    Popper H, Brod J (1938) Die physiologischen Schwankungen der Nierenarbeit. Z Klin Med 134:196–223Google Scholar
  29. 29.
    Premen AJ (1985) Importance of the liver during glucagon-mediated increase in canine renal hemodynamics. Am J Physiol 249:F319-F322Google Scholar
  30. 30.
    Pullmann TN, Alving AS, Dern RJ, Landowne M (1954) The influence of dietary protein intake on specific renal functions in normal man. J Lab Clin Med 44:320–332Google Scholar
  31. 31.
    Raij L, Chiou XC, Owens R, Wrigley BS (1985) Therapeutic implications of hypertension-induced glomerular injury. Am J Med 79 (Suppl. 3c):37–39Google Scholar
  32. 32.
    Rodriguez-Iturbe B, Herrera J, Garcia R (1985) Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: evidence for glomerular hyperfiltration. Lancet II:461–464Google Scholar
  33. 33.
    Ter-Wee PM, Geerlings W, Rosman JB, Sluiter WJ, Van der Geest S, Donker AJM (1985) Testing renal reserve filtration capacity with an amino-acid solution. Nephron 41:193–199Google Scholar
  34. 34.
    Ter-Wee PM, Rosman JB, Van der Geest S, Sluiter WG, Donker AJM (1986) Renal haemodynamics during separate and combined infusion of amino acids and dopamine. Kidney Int 29:870–874Google Scholar
  35. 35.
    Ter-Wee PM, Smit AJ, Rosman JB, Sluiter WJ, Donker AJM (1986) Effect of intravenous infusion of low-dose dopamine on renal function in normal individuals and in patients with renal disease. Am J Nephrol 6:42–46Google Scholar
  36. 36.
    Tygstrup N (1963) Determination of the hepatic galactose elimination capacity after a single intravenous injection in man. (The reproducibility and the influence of uneven distribution). Acta Physiol Scand 58:162–172Google Scholar
  37. 37.
    Uranga J (1969) The hepatic production of a glomerular pressure substance in the toad. Gen Comp Endocrinol 13:179–181Google Scholar
  38. 38.
    Uranga J, Fuenzalida R (1974) Effect of glomerulopressin and a rabbit glomerulopressin-like substance in the rat. Horm Metab Res 7:180–184Google Scholar
  39. 39.
    Uranga J, Fuenzalida R, Rapoport AL, Castillo E (1979) Effect of glucagon and glomerulopressin on the renal function of the dog. Horm Metab Res 11:275–279Google Scholar
  40. 40.
    Wheller DC, Cosgriff PS, Bennett SE, Walls J (1986) Functional reserve capacity of the single kidney in man. Nephrol Dial Transplant 1:95Google Scholar
  41. 41.
    Williams GM (1988) Results of kidney transplantation. In: James G, Cerilli JB (eds) Organ Transplantation and Replacement. Lippincott, Philadelphia, pp 471–480Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • T. Eisenhauer
    • 1
  • J. Talartschik
    • 1
  • H. Hartmann
    • 2
  • E. Quentin
    • 1
  • F. Scheler
    • 1
  1. 1.Abteilung Nephrologie und RheumatologieGermany
  2. 2.Abteilung Gastroenterologie und Endokrinologie der Universitätsklinik GöttingenGermany

Personalised recommendations