Klinische Wochenschrift

, Volume 66, Issue 18, pp 873–882 | Cite as

Pathobiochemical aspects of diabetic nephropathy

  • E. Schleicher
  • A. Nerlich
  • K. -D. Gerbitz
Article

Summary

Diabetic nephropathy develops in many diabetic patients as consequence of glomerulosclerosis. On the basis of a series of recent observations it is suggested that a combination of metabolic and hemodynamic changes is responsible for the pathogenesis of diabetic nephropathy. Since the glomerular filtration unit has been characterized to consist of collagen type IV and minor components like laminin, fibronectin and heparan sulfate proteoglycan, influence of diabetes on basement membrane (BM) components has been studied. Biochemical alterations of glomerular BM consist of an increased nonenzymatic glucosylation of type IV collagen leading to unphysiological crosslinking. This, in turn, may result in alteration of the size selective properties of the glomerular filtration unit. Changes in composition of glomerular BM have recently been described. An increased synthesis of type IV collagen with concomitant decrease of heparan sulfate proteoglycan may lead to alteration of the charge selective barrier and consequently to increased permeability of the glomerular BM. Permanently unbalanced synthesis of BM components finally results in obliteration of the capillary lumen. In late state nephropathy intrinsic basement membrane components are no longer produced. Instead, massive accumulation of PAS positive material occurs.

Key words

Pathobiochemistry Diabetes mellitus Nephropathy Late complications Polyanion Basement membrane Nonenzymatic glucosylation 

Abbreviations

BM

basement membrane

AGE

advanced glucosylation end products

IgG

immunglobulin G

HSPG

heparan sulfate proteoglycan

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becher D, Miller M (1960) Presence of diabetic glomerulosclerosis in patients with hemochromatosis. N Engl J Med 263:367–371Google Scholar
  2. 2.
    Beisswenger PJ, Spiro RG (1970) Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 168:596–598Google Scholar
  3. 3.
    Bell RH, Fernandez-Cruz L, Brimm JE, Sayers HA, Lee S, Orloff MJ (1980) Prevention by whole pancreas transplantation of glomerular basement membrane thickening in alloxan diabetes. Surgery 88:31–35Google Scholar
  4. 4.
    Beyer-Mears A, Ku L, Cohen MP (1984) Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes 33:604–607Google Scholar
  5. 5.
    Brownlee M, Pongor S, Cerami A (1983) Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen: Role in the in situ formation of immune complexes. J Exp Med 138:1739–1744Google Scholar
  6. 6.
    Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (1986) Aminoguanidin prevents diabetes-induced arterial wall protein cross-linking. Science 232:1629–1632Google Scholar
  7. 7.
    Brownlee M (1987) Personal communicationGoogle Scholar
  8. 8.
    Camerini-Davalos RA, Caufield JB, Rees SB, Lozano-Castaneda O, Naldjian S, Marble A (1963) Preliminary observations on subjects with prediabetes. Diabetes 12:508–518Google Scholar
  9. 9.
    Cohen MP, Surma ML (1984) Effects of diabetes on in vivo metabolism of 35 S-labeled glomerular basement membrane. Diabetes 33:8–12Google Scholar
  10. 10.
    Deckert T, Feld-Rasmussen B, Djurup R, Deckert M (1988) Glomerular size and charge selectivity in insulin-dependent diabetes mellitus. Kidney Int 33:100–106Google Scholar
  11. 11.
    Farquhar MG, Courtoy PJ, Lemkin MC, Kanwar YS (1982) Current knowledge of the functional architecture of the glomerular basement membrane. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. Raven Press, New York, pp 9–29Google Scholar
  12. 12.
    Federlin K, Bretzel RG (1981) Reversibility of diabetic glomerulopathy by islet transplantation in experimental animals. Pediat Adolesc Endocrinol 9:326–332Google Scholar
  13. 13.
    Gallagher JT, Lyon M, Steward WP (1986) Structure and function of heparan sulfate proteoglycans. Biochem J 236:313–325Google Scholar
  14. 14.
    Grant ME, Harwood R, Williams IF (1976) Increased synthesis of glomerular basement membrane collagen in streptozotocin diabetes. J Physiol (London) 257:56–57Google Scholar
  15. 15.
    Greene D (1988) The pathogenesis and prevention of diabetic neuropathy and nephropathy. Metabol 37:Suppl 1 25–29Google Scholar
  16. 16.
    Hostetter TH, Rennke HG, Brenner BM (1982) The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72:375–380Google Scholar
  17. 17.
    Jeraj KP, Michael AF, Mauer SM, Brown DM (1983) Glucosylated and normal human or rat albumin do not bind to renal basement membranes of diabetic and control rats. Diabetes 32:380–382Google Scholar
  18. 18.
    Kanwar YS, Farquhar MG (1979) Isolation of glycosaminoglycans (heparan-sulfate) from glomerular basement membranes. Proc Natl Acad Sci USA 76:4493–4497Google Scholar
  19. 19.
    Kanwar YS, Rosenzweig LJ, Linker A, Jakubowski ML (1983) Decreased de novo synthesis of glomerular proteoglycans in diabetes: Biochemical and autoradiographic evidence. Proc Natl Acad Sci 80:2272–2275Google Scholar
  20. 20.
    Kanwar YS (1984) Biophysiology of filtration and proteinuria. Lab Invest 51:7–21Google Scholar
  21. 21.
    Kefalides NA (1974) Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys. J Clin Invest 53:403–407Google Scholar
  22. 22.
    Kilo C, Vogler N, Williamson JR (1972) Muscle capillary basement membrane changes related to aging and to diabetes mellitus. Diabetes 21:881–905Google Scholar
  23. 23.
    Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Amer J Path 12:83–89Google Scholar
  24. 24.
    Krolewski AS, Canessa M, Warram JH, Lori MB, Laffel A, Christlieb AR, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318:140–145Google Scholar
  25. 25.
    Laurie GW, Leblond CP, Martin GR (1982) Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membranes. J Cell Biol 95:340–344Google Scholar
  26. 26.
    Luft R, Guillemin R (1974) Growth hormone and diabetes in man: old concepts — new implications. Diabetes 23:783–787Google Scholar
  27. 27.
    Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC (1988) Increased sodium-lithium counter transport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 318:146–150Google Scholar
  28. 28.
    Mauer SM, Barbosa J, Vernier RL (1976) Development of diabetic vascular lesions in normal kidneys transplanted into patients with diabetes mellitus. N Engl J Med 295:916–920Google Scholar
  29. 29.
    Näthke HE, Siess EA, Wieland OH (1984) Glucosylated plasma protein injection does not produce glomerular basement membrane thickening. Horm metabol Res 16:557–558Google Scholar
  30. 30.
    Osterby R, Gunderson HTG, Gotzsche O, Hirose K, Kroustrup JP, Rasch R, Seyer-Hansen K (1982) Quantitative studies of diabetic glomeruli. In: Kuehn K, Schoene H, Timpl R (eds) New Trends in Basement Membrane Research, New York, Raven Press, pp 203–209Google Scholar
  31. 31.
    Parthasarathy N, Spiro RG (1982) Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31:738–741Google Scholar
  32. 32.
    Pongor S, Ulrich PC, Bencsath A, Cerami A (1984) Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USA 81:2684–2688Google Scholar
  33. 33.
    Rasch R (1980) Prevention of diabetic glomerulopathy in streptozotocin diabetics rats by insulin treatment. Diabetologia 18:413–416Google Scholar
  34. 34.
    Rohrbach DH, Hassell JR, Kleinman HK, Martin GR (1982) Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 31:185–188Google Scholar
  35. 35.
    Rohrbach DH, Wagner CW, Star VL, Martin GR, Brown KS, Yoon JW (1983) Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocin-induced diabetic mice. J Biol Chem 258:11672–11677Google Scholar
  36. 36.
    Rohrbach R (1986) Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virch Arch (Cell Pathol) 51:127–135Google Scholar
  37. 37.
    Schleicher ED, Wieland OH (1984) Changes of human glomerular basement membrane in diabetes mellitus. J Clin Chem Clin Biochem 22:223–227Google Scholar
  38. 38.
    Schleicher ED, Wieland OH (1986) Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim Biophys Acta 884:199–205Google Scholar
  39. 39.
    Schleicher ED, Wagner EM, Olgemöller B, Nerlich A, Gerbitz KD (1988) Immunological determination of a basement membrane associated heparan sulfate proteoglycan in human tissues. Lab Invest submittedGoogle Scholar
  40. 40.
    Siess EA, Näthke HE, Dexel Th, Haslbeck M, Mehnert H, Wieland OH (1979) Dependency of muscle capillary basement membrane thickness on the duration of diabetes. Diabetes Care 2:472–478Google Scholar
  41. 41.
    Siperstein MD, Unger RH, Madison LL (1968) Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest 47:1973–1999Google Scholar
  42. 42.
    Stow JL, Sawada H, Farquhar MG (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci USA 82:3296–3300Google Scholar
  43. 43.
    Timpl R, Oberbäumer I, Furthmayr H, Kuehn K (1982) Macromolecular organisation of type IV collagen. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. Raven Press, New York, pp 57–68Google Scholar
  44. 44.
    McVerry BA, Hopp A, Fisher C, Huhns ER (1980) Lancet I:738–740Google Scholar
  45. 45.
    Vogt BW, Schleicher ED, Wieland OH (1982) ε-amino-lysine bound glucose in human tissues obtained at autopsy: increase in diabetes mellitus. Diabetes 31:1123–1127Google Scholar
  46. 46.
    Vracko R (1974) Basal lamina layering in diabetes mellitus: evidence for accelerated rate of cell death and cell regeneration. Diabetes 23:94–104Google Scholar
  47. 47.
    Witztum JL, Steinbrecher UP, Kesaniemi YA, Fisher M (1984) Antibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc Natl Acad Sci USA 81:3204–3208Google Scholar
  48. 48.
    Yue DK, McLennan S, Delbridge L (1983) The thermal stability of collagen in diabetic rats: Correlation with severty of diabetes and non-enzymatic glycosylation. Diabetologia 24:282–285Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. Schleicher
    • 1
  • A. Nerlich
    • 2
  • K. -D. Gerbitz
    • 1
  1. 1.Forschergruppe Diabetes und Klinisch-chemisches Institut, Krankenhaus München-SchwabingMünchen
  2. 2.Pathologisches Institut der UniversitätMünchen

Personalised recommendations