Skip to main content
Log in

Removal of pro-inflammatory cytokines with renal replacement therapy: Sense or nonsense?

  • Review Article
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469

    Google Scholar 

  2. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock — Relation to multiple-system organ failure and mortality. Chest 103:565–575

    Google Scholar 

  3. Gotloib L, Barzilay E, Shustak A, Wais Z, Jaichenko J, Lev A (1986) Hemofiltration in septic ARDS. The artificial kidney as an artificial endocrine lung. Resuscitation 13:123–132

    Google Scholar 

  4. Barzilay E, Kessler D, Berlot G, Gullo A, Geber D, Ben Zeev I (1989) Use of extra-corporeal supportive techniques as additional treatment for septic-induced multiple organ failure patients. Crit Care Med 17:634–637

    Google Scholar 

  5. Coraim FJ, Coraim HP, Ebermann R, Stellwag FM (1986) Acute respiratory failure after cardiac surgery: clinical experience with the application of continuous arteriovenous hemofiltration. Crit Care Med 14:714–718

    Google Scholar 

  6. Bagshaw ONT, Anaes FRC, Hutchinson A (1992) Continuous arteriovenous hemofiltration and respiratory function in multiple organ systems failure. Intensive Care Med 18:334–338

    Google Scholar 

  7. DiCarlo JV, Dudley TE, Sherbotie JR, Kaplan BS, Costarino AT (1990) Continuous arteriovenous hemofiltration/dialysis improves pulmonary gas exchange in children with multiple organ system failure. Crit Care Med 18: 822–826

    Google Scholar 

  8. Storck M, Hartl WH, Zimmerer E, Inthorn D (1991) Comparison of pumpdriven and spontaneous continuous hemofiltration in postoperative acute renal failure. Lancet 337:452–455

    Google Scholar 

  9. Staubach KH, Rau HG, Kooistra A, Shardey HM, Hohlbach G, Schildberg FW (1989) Can hemodiafiltration increase survival in acute endotoxemia—a porcine shock model. Prog Clin Biol Res 308:821–826

    Google Scholar 

  10. Gomez A, Wang R, Unruh H, Light RB, Bose D, Chau T, Correa E, Mink S (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–685

    Google Scholar 

  11. Stein B, Pfenninger E, Grünert A, Schmitz JE, Hudde M (1990) Influence of continuous hemofiltration on hemodynamics and central blood volume in experimental endotoxic shock. Intensive Care Med 16:494–499

    Google Scholar 

  12. Stein B, Pfenninger E, Grünert A, Schmitz JE, Deller A, Kocher F (1991) The consequences of continuous hemofiltration on lung mechanics and extravascular lung water in a porcine endotoxic shock model. Intensive Care Med 17:293–298

    Google Scholar 

  13. Grootendorst AF, Van Bommel EFH, Van der Hoven B, Van Leengoed LAMG, Van Osta ALM (1992) High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 18:235–240

    Google Scholar 

  14. Hack CE, Thijs LG (1991) The orchestra of mediators in the pathogenesis of septic shock: a review. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 14, update 1991. Springer, Berlin Heidelberg New York, pp 232–246

    Google Scholar 

  15. Fong Y, Moldawer LL, Shires GT, Lowry SF (1990) The biologic characteristics of cytokines and their implication in surgical injury. Surg Gynecol Obstet 170:363–378

    Google Scholar 

  16. Beutler B (1993) Endotoxin, tumor necrosis factor, and related mediators: new approaches to shock. New Horizons 1:3–12

    Google Scholar 

  17. Shapiro L, Gelfond JA (1993) Cytokines and sepsis: pathophysiology and therapy. New Horizons 1:13–22

    Google Scholar 

  18. Tracey KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21:S415-S422

    Google Scholar 

  19. Dinarello CA, Aiura K, Gelfand JA (1992) The role of interleukin-1 in septic shock. In: Vincent JL (ed) 1992 Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 25–35

    Google Scholar 

  20. Lowry SF (1993) Anticytokine therapies in sepsis. New Horizons 1:120–126

    Google Scholar 

  21. Dinarello CA, Gelfand JA, Wolff SM (1993) Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA 269: 1829–1935

    Google Scholar 

  22. Golper TA, Vincent HH, Gleason JR, Vos MC (1993) Drug removal during high efficiency and high-flux hemodialysis. Contemp Issues Nephrol 27: 175–208

    Google Scholar 

  23. Vincent HH, Akcahuseyin E, Goessens WHF, Van Duyl WA, Schalekamp MADH (1993) Drug clearance by continuous haemodiafiltration (CAVHD). Analysis of sieving coefficient and mass transfer coefficients of diffusion. Blood Purif 11:99–107

    Google Scholar 

  24. Lee CC, Marbury TC (1984) Drug therapy in patients undergoing hemodialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet 9:42–66

    Google Scholar 

  25. Reetze-Bonorden P, Bohler J, Keller E (1993) Drug dosage in patients during continuous renal replacement therapy: pharmacokinetic and therapeutic considerations. Clin Pharmacokinet 24: 162–179

    Google Scholar 

  26. Beutler BA, Milsark IW, Cerami A (1985) Cachectin/tumor necrosis factor: production, distribution and metabolic fate in vivo. J Immunol 135: 3972–3977

    Google Scholar 

  27. Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153

    Google Scholar 

  28. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyers S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486

    Google Scholar 

  29. Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stanford GG, Van der Meer JWM, Endres S, Lonneman G, Corsetti J, Chernow B, Wilmore DW, Wolff SM, Burke JF, Dinarello CA (1990) Circulating Interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 161:79–84

    Google Scholar 

  30. Suffredini AF (1992) Endotoxin administration to humans: a model of inflammatory responses relevant to sepsis. In: Lamy M, Thijs LG (eds) Mediators of sepsis. Update in intensive care and emergency medicine, vol 16. Springer, Berlin Heidelberg New York, pp 13–30

    Google Scholar 

  31. Ertel W, Morrison MH, Wang P, Zheng FB, Ayala A, Chaudry IH (1991) The complex pattern of cytokines in sepsis. Ann Surg 214:141–148

    Google Scholar 

  32. Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17:975–978

    Google Scholar 

  33. De Groote MA, Martin MA, Densen P, Pfaller MA, Wenzel RP (1989) Plasma tumor necrosis factor levels in patients with presumed sepsis. JAMA 262: 249–251

    Google Scholar 

  34. Marano MA, Fong Y, Moldawer LL, Wei H, Calvano SE, Tracey KJ, Barie PS, Manogue K, Cerami A, Shires GT, Lowry SF (1990) Serum cachectin/tumor necrosis factor in critically ill patients with burns correlated with infection and mortality. Surg Gynecol Obstet 170:32–38

    Google Scholar 

  35. Offner F, Phillipé J, Vogelaers D, Colardyn F, Baele G, Baudrihaye M, Vermeulen A, Leroux-Roels G (1990) Serum tumor necrosis factor levels in patients with infections disease and septic shock. J Lab Clin Med 116:100–105

    Google Scholar 

  36. Munoz C, Misset B, Fitting C, Blériot JP, Carlet J, Cavaillon JM (1991) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur J Immunol 21:2177–2184

    Google Scholar 

  37. Dofferhoff ASM, Bom VJJ, De Vries-Hospers HG, Van Ingen J, Van der Meer J, Hazenberg BPC, Mulder POM, Weits J (1992) Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 20:185–192

    Google Scholar 

  38. Calandra T, Baumgartner JD, Gran GE, Wu MM, Lambert PH, Schellekens J, Verhoef J, Glauser MP and the Swiss-Dutch J 5 immunoglobulin study group (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-α and interferon-γ in the serum of patients with septic shock. J Infect Dis 161:982–987

    Google Scholar 

  39. Debets JMH, Kampmeijer R, Van der Linden MPMH, Buurman WA, Van der Linden CJ (1989) Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med 17: 489–494

    Google Scholar 

  40. Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GE, Goeddel DV, Harkins RN (1985) Human tumor necrosis factor: production, purification and characterization. J Biol Chem 260:2345–2354

    Google Scholar 

  41. Smith RA, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem 262:6951–6954

    Google Scholar 

  42. Wollenberg GK, La Marre J, Rosendal S, Gonias SL, Hayes MA (1991) Binding of tumor necrosis factor alpha to activated forms of human plasma alpha 2 macroglobulin. Am J Pathol 138: 265–272

    Google Scholar 

  43. Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis facxtor α in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849

    Google Scholar 

  44. Lantz M, Malik S, Slevin ML, Olsson I (1990) Infusion of tumor necrosis factor (TNF) causes an increase in circulating TNF-binding protein in human. Cytokine 2:402–406

    Google Scholar 

  45. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications of the complex physiology of TNF: Cell 53:45–53

    Google Scholar 

  46. Tracey KJ, Cerami A (1992) Tumor necrosis factor and regulation of metabolism in infection: role of systemic versus tissue level. Proc Soc Exp Biol Med 200:233–239

    Google Scholar 

  47. Ginoir BP, Johnson JH, Braun T, Allen GL, Bentler B (1992) The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 90:693–698

    Google Scholar 

  48. Tracey KJ, Morgello S, Koplin B, Fahey TJ, Fox J, Aledo A, Manogue K, Cerami A (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. J Clin Invest 86:2014–2024

    Google Scholar 

  49. Fong Y, Marano MA, Moldawer LL, Wei H, Calvano SE, Kenney JS, Allison AC, Cerami A, Shires GT, Lowry SF (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85:1896–1904

    Google Scholar 

  50. Chapman PB, Lester TJ, Casper ES, Gabrilove JL, Wong GY, Kempin SJ, Gold PJ, Welt S, Warren RS, Starries HF, Sherwin SA, Old LJ, Oettgen HF (1987) Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol 5:1942–1951

    Google Scholar 

  51. Blick M, Sherwin SA, Rosenblum M, Gutterman J (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47: 2986–2989

    Google Scholar 

  52. Damas P, Ledoux D, Nys M, Vrindts Y, DeGroote D, Franchimont P, Lamy M (1992) Cytokine serum level during severe sepsis: human IL-6 as a marker of severity. Ann Surg 215:356–362

    Google Scholar 

  53. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock: Association between interleukin-6, interleukin-1 and fatal outcome. J Exp Med 169:333–338

    Google Scholar 

  54. Girardin E, Grau GW, Dayer JM, Roux-Lombard P, the J 5 study group, Lambert PH (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400

    Google Scholar 

  55. Bath W, Luger TA (1989) Identification of α 2 macroglobulin cytokine binding plasma protein. Binding of interleukin 1 β α 2 macroglobulin. J Biol Chem 264:5818–5825

    Google Scholar 

  56. Dinarello CA, Thompson RC (1991) Blocking IL-1: Interleukin-1 receptor antagonist in vivo and in vitro. Immunol Today 12:404–409

    Google Scholar 

  57. Kunkel SL, Spengler M, May MA, Spengler R, Larrick J, Remick D (1988) Prostaglandin E-2 regulates macrophage derived tumor necrosis factor gene expression. J Biol Chem 263: 5380–5384

    Google Scholar 

  58. Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science 232:977–980

    Google Scholar 

  59. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA (1990) Correlations and interactions in the production of interleukin-6 (IL-6), interleukin-1 (IL-1) and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75:40–47

    Google Scholar 

  60. Barrera P, Janssen EM, Demacker PNM, Wetzels JFM, Van der Meer JWM (1992) Removal of interleukin-1β and tumor necrosis factor from human plasma by in vitro dialysis with polyacrylonitrile membranes. Lymfokine Cytokine Res 11:99–104

    Google Scholar 

  61. Lonneman G, Koch KM, Shaldon S, Dinarello CA (1988) Studies on the ability of hemodialysis membranes to induce, bind and clear human interleukin-1. J Lab Clin Med 112:76–86

    Google Scholar 

  62. Lonneman G, Schindler R, Dinarello CA, Koch KM (1993) Removal of cytokines by hemodialysis membrane in vitro. In: Faist E, Meakins J, Schildberg FW (eds) Host defense dysfunction in trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 613–623

    Google Scholar 

  63. Dinarello CA, Koch KM, Shaldon S (1988) Interleukin-1 and its relevance in patients treated with hemodialysis. Kidney Int 33 [Suppl 24]:S21-S26

    Google Scholar 

  64. Tetta C, Camussi G, Turello E, Salomone M, Aimo G, Priolo G, Segoloni G, Vercellone A (1990) Production of cytokines in hemodialysis. Blood Purif 8:337–346

    Google Scholar 

  65. Lonneman G, Haubitz M, Schindler R (1990) Hemodialysis-associated induction of cytokines. Blood Purif 8: 214–222

    Google Scholar 

  66. Herbelin A, Nguyen AT, Urena P, Descamps-Latscha B (1992) Induction of cytokines by dialysis membranes in normal whole blood: a new in vitro assay for evaluating membrane biocompatibility. Blood Purif 10:40–52

    Google Scholar 

  67. Bigazzi R, Atti M, Baldari B (1990) High-permeable membranes and hypersensitivity-like reactions: role of dialysis fluid contamination. Blood Purifc 8: 190–198

    Google Scholar 

  68. Nagaki M, Hughes RD, Lau JYN, Williams R (1991) Removal of endotoxin and cytokines by adsorbents and the effect of plasma protein binding. Int J Artif Organs 14:43–50

    Google Scholar 

  69. Byrick RJ, Goldstein MB, Wong PY (1982) Increased plasma tumor necrosis factor concentration in severe rhabdomyolysis is not reduced by continuous arteriovenous hemodialysis. Crit Care Med 20:1483–1486

    Google Scholar 

  70. Kierdorf H, Melzer H, Weissen D, Heintz B, Sieberth HG (1992) Elimination of tumor necrosis factor α (TNFα) by continuous venovenous hemofiltration (Abstr). Ren Fail 14:98

    Google Scholar 

  71. McDonald BR, Mehta RL (1989) Transmembrane flux of IL-1β and TNFα in patients undergoing continuous arteriovenous hemodialysis (Abstr). J Am Soc Nephrol 1:56

    Google Scholar 

  72. Bellomo R, Tipping P, Boyce N (1991) Tumor necrosis factor clearance during veno-venolus hemodiafiltration in the critically ill. Trans Am Soc Artif Intern Organs 37:M322–323

    Google Scholar 

  73. Bellomo R, McGrath B, Boyce N (1991) In vivo catecholamine extraction during continuous hemodiafiltration in inotrope-dependent patients. Trans Am Soc Artif Intern Organs 37:M324–325

    Google Scholar 

  74. Lefer AM, Martin J (1970) Origin of myocardial depressant factor in shock. Am J Physiol 218:1423–1427

    Google Scholar 

  75. Parillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock: Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Google Scholar 

  76. Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parillo JE (1989) A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 95: 1072–1080

    Google Scholar 

  77. Janbon B, Vuillez JP, Carpentier F, Barnoud D, André-Poyand P, Barbe G, Guigniez (1992) Removal of circulating tumor necrosis factor. Its role in septic shock treatment. Ann Méd Interne 143 [Suppl 1]:13–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schetz, M., Ferdinande, P., Van den Berghe, G. et al. Removal of pro-inflammatory cytokines with renal replacement therapy: Sense or nonsense?. Intensive Care Med 21, 169–176 (1995). https://doi.org/10.1007/BF01726541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01726541

Keywords

Navigation