Skip to main content
Log in

Intracellular regulatory cascades: Examples from parathyroid hormone regulation of renal phosphate transport

Intrazelluläre Regulationsmechanismen am Beispiel der Regulation des renalen Phosphattransportes

  • Referate
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The knowledge about intracellular regulatory cascades in hormone action has increased considerably over the last few years. Receptor occupation at the plasma membrane level results in a production of intracellular messengers, such as cyclic nucleotides (cAMP, cGMP), inositoltrisphosphate (IP3), diacylglycerol (DAG) and a rise in cytosolic calcium concentration. These messengers control the activity of different regulatory mechanisms which operate either in sequence or in parallel to generate the final biological response. In PTH-dependent regulation of renal phosphate transport, cAMP-dependent and calcium-dependent mechanisms are involved: Recent experiments with cultured renal epithelial cells have confirmed that activation of adenylate cyclase is the initial event. However, the cAMP signal can be bypassed and direct activation of protein kinase C seems to mimic PTH induced inhibition of phosphate transport. The final event in the regulatory cascade is most likely a removal of the phosphate transport system followed by a degradation.

Zusammenfassung

Die Kenntnisse der intrazellulären Regulationsmechanismen in Hormon-kontrollierten Zell-Funktionen sind während der letzten Jahre enorm angewachsen. Die Besetzung des Rezeptors in der Plasma-Membran führt zur Bildung verschiedener intrazellulärer Signale („Messenger“), z.B. cyclische Nucleotide (cAMP, cGMP), Inositoltrisphosphate (IP3), Diacylglycerin (DAG), Erhöhung der Kalzium-Konzentration. Diese „Messenger“ kontrollieren die Aktivität verschiedener Regulationsmechanismen, die entweder sich folgend oder parallel schlußendlich zur biologischen Antwort führen. Bei der PTH-abhängigen Regulation des Phosphattransportes sind cAMP-abhängige und Kalzium-abhängige Regulationsmechanismen beteiligt: Versuche an kultivierten Epithelzellen haben bestätigt, daß die Stimulierung der Adenylatcyclase als erstes Ereignis auftritt. Das cAMP Signal kann jedoch umgangen werden und eine direkte Aktivierung der Proteinkinase C kann die PTH-Hemmung nachahmen. Als letztes Ereignis in der Regulationskette tritt vermutlich eine Entfernung des Transportsystemes auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballermann BJ, Brenner BM (1985) Biologically active atrial peptides. J Clin Invest 76:2041–2048

    Google Scholar 

  2. Barrett PQ, Zawalich K, Rasmussen H (1985) Protein kinase C activity in renal microvillus membrane. Biochem Biophys Res Commun 128:494–505

    Google Scholar 

  3. Berridge MJ, Irvine RJ (1984) Inositol triphosphate: a novel second messenger in cellular signal transduction. Nature 312:315–321

    Google Scholar 

  4. Biber J, Murer H (1985) Na/P1, cotransport in LLC-PK1 cells: Fast adaptive response to P1 deprivation. Amer J Physiol 249:C430-C434

    Google Scholar 

  5. Biber J, Malmström K, Scalera V, Murer H (1983) Phosphorylation of rat kidney proximal tubular brush border membranes. Role of cAMP-dependent protein phosphorylation in the regulation of phosphate transport. Pflügers Arch 398:221–226

    Google Scholar 

  6. Bonjour JP, Caverzasio J (1984) Phosphate transport in the kidney. Rev Physiol Biochem Pharmacol 100:161–214

    Google Scholar 

  7. Caverzasio J, Brown CDA, Biber J, Bonjour JP, Murer H (1985) Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells. Amer J Physiol 248:F122-F127

    Google Scholar 

  8. Caverzasio J, Rizzoli R, Bonjour JP (1986) Sodium-dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line. J Biol Chem 261:3233–3237

    Google Scholar 

  9. Evers C, Murer H, Kinne R (1978) Effect of parathyrin on the transport properties of isolated renal brush border vesicles. Biochem J 172:49–56

    Google Scholar 

  10. Gilman AG (1984) Guanine nucleotide binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 73:1–4

    Google Scholar 

  11. Gmaj P, Murer H (1986) Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev 66:36–70

    Google Scholar 

  12. Hammerman MR (1986) Phosphorylation of type II cAMP-dependent protein kinase in canine renal brush border membranes. Amer J Physiol 250:F659-F666

    Google Scholar 

  13. Hammerman MR (1983) Phosphate transport across renal proximal tubular cell membranes. Editorial Review. Amer J Physiol (in the press)

  14. Hammerman MR, Hruska KA (1982) Cyclic AMP-dependent protein phosphorylation in canine renal brush border membrane vesicles is associated with decreased phosphate transport. J Biol Chem 257:992–999

    Google Scholar 

  15. Hammerman MR, Corpus VM, Morrissey JJ (1983a) NAD+-induced inhibition of phosphate transport in canine renal brush border membrane. Mediation through a process other than or in addition to NAD+-hydrolysis. Biochim Biophys Acta 732:110–116

    Google Scholar 

  16. Hammerman MR, Hansen VA, Morrissey JJ (1982) ADP ribosylation of canine renal brush border membrane vesicles protein is associated with decreased phosphate transport. J Biol Chem 25:12380–12386

    Google Scholar 

  17. Hammerman MR, Hansen VA, Morrissey JJ (1983b) Cyclic AMP-dependent protein phosphorylation and dephosphorylation alter phosphate transport in canine renal brush border vesicles. Biochim Biophys Acta 755:10–16

    Google Scholar 

  18. Hammerman MR, Karl IE, Hruska KA (1980) Regulation of canine renal vesicle P1 transport by growth hormone and parathyroid hormone. Biochim Biophys Acta 603:322–335

    Google Scholar 

  19. Handler JS (1983) Use of cultured epithelia to study transport and its regulation. J Exp Biol 106:59–69

    Google Scholar 

  20. Liang CT, Sacktor B (1977) Preparation of cortex basal lateral and brush border membranes. Localization of adenylate cyclase and guanylate cyclase activities. Biochim Biophys Acta 446:474–487

    Google Scholar 

  21. Malmström K, Murer H (1985) Ca2+-dependent protein phosphorylation in brush border membranes of rat kidney proximal tubules. Pflügers Arch 404:358–364

    Google Scholar 

  22. Malmström K, Murer H (1986) Regulation of Na-dependent phosphate transport by parathyroid hormone in a cultured renal epithelial cell line (OK). Proc Natl Acad Sci (USA) (submitted for publication)

  23. Malmström K, Murer H (1986) PTH inhibits phosphate transport in OK cells but not in LLC-PK1 and JTC.12.P3 cells. Amer J Physiol (in the press)

  24. Morel F, Doucet A (1986) Hormonal control of kidney function at the cell level. Physiol Reviews 66:377–468

    Google Scholar 

  25. Nestler EJ, Greengard P (1983) Protein phosphorylation in the brain. Nature 305:583–588

    Google Scholar 

  26. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698

    Google Scholar 

  27. Putney JW (1986) A model for receptor regulated calcium entry. Cell Calcium 7:1–12

    Google Scholar 

  28. Pollock AS, Warnock DG, Strewler GJ (1986) Parathyroid hormone inhibition of a Na+-H+ antiporter activity in a cultured renal cell line. Amer J Physiol 19:F217-F225

    Google Scholar 

  29. Rasmussen H, Barrett PQ (1984) Calcium messenger system: An integrated view. Physiol Reviews 64:938–984

    Google Scholar 

  30. Rasmussen H, Kojima J, Apfeldorf W, Barrett PQ (1986) Cellular mechanisms of hormone action in the kidney: Messenger function of calcium and cyclic AMP. Kidney Intern 29:90–97

    Google Scholar 

  31. Rodbell M (1985) Programmable messengers: A new theory of hormone action. Trends in Biochem Sci, November:461–464

  32. Ross EM, Gilman AE (1980) Biochemical properties of hormone sensitive adenylate cyclase. Ann Rev Biochem 49:533–565

    Google Scholar 

  33. Roth RA, Cassell DJ (1980) Insulin receptor: Evidence that it is a protein kinase. Science 219:299–301

    Google Scholar 

  34. Schlatz L, Schwartz J, Kinne-Saffran E, Kinne R (1975) Distribution of parathyroid hormone stimulating adenylate cyclase in plasma membranes of cells of kidney cortex. J Membr Biol 24:131–144

    Google Scholar 

  35. Tanakawa T, Wada E, Tsumita T, Masaki T, Filburn CR, Sacktor B (1984) Effect of parathyroid hormone, cyclic AMP, and Ca2+ in the phosphorylation of brush border membrane in rabbit kidney. Mineral Elec Metab 10:103–112

    Google Scholar 

  36. Teitelbaum AP, Strewler GJ (1984) Parathyroid hormone receptors coupled to a cyclic adenosine monophosphate formation in an established renal cell line. Endocrinology 114:980–985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murer, H., Malmström, K. Intracellular regulatory cascades: Examples from parathyroid hormone regulation of renal phosphate transport. Klin Wochenschr 64, 824–828 (1986). https://doi.org/10.1007/BF01725554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01725554

Key words

Schlüsselwörter

Navigation