Skip to main content
Log in

Pharmacokinetics of antithyroid drugs

Pharmakokinetik der Thyreostatika

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Studies of antithyroid drug pharmacokinetics suffer from the lack of simple and sensitive methods for the measurement of these drugs in biologic fluids. This is reflected by most of the data available at present. From a critical review of these studies, the following conclusions emerge:

  1. 1)

    Absorption of methimazole and carbimazole is subject to considerable interindividual variability, which is more pronounced for methimazole than for carbimazole.

  2. 2)

    Propylthiouracil, but not methimazole, is bound to plasma proteins.

  3. 3)

    After administration of carbimazole, only methimazole can be detected in serum and thyroid tissue. Conversion of carbimazole to methimazole appears to be an enzymatic process. Methimazole plasma levels are lower after carbimazole administration than after equal amounts (on a weight basis) of methimazole; 10 mg carbimazole are equivalent to 6–7 mg methimazole.

  4. 4)

    Methimazole and propylthiouracil plasma levels decrease with time according to first-order kinetics. Serum half-life of propylthiouracil is about 1 h, half-life of methimazole is 2–6 h.

  5. 5)

    Antithyroid drugs are concentrated by the thyroid gland. This accumulation is inhibited in iodine deficiency in animals. Inhibition of iodide organification is dependent on intrathyroidal rather than plasma concentration of antithyroid drugs.

  6. 6)

    Intrathyroidal metabolism of antithyroid drugs involves binding to thyroglobulin and stepwise oxidation. The main metabolite of propylthiouracil is PTU-SO2H. A metabolite of methimazole, methylthiohydantoin, can be detected in plasma and urine.

  7. 7)

    Propylthiouracil is rapidly coupled to glucuronic acid. A significant proportion of antithyroid drugs and their metabolites is excreted into bile and later reabsorbed (enterohepatic circulation). Fecal excretion is very low. In urine, small amounts of unchanged drugs are excreted together with glucuronides, methyl derivatives (only PTU) and unidentified metabolites.

  8. 8)

    In pregnancy, methimazole half-life appears to be shortened. Methimazole and propylthiouracil can cross the placenta and are detected in the fetal circulation and thyroid. Concentrations in breast milk are very low, especially for propylthiouracil.

Zusammenfassung

1. Untersuchungen der Pharmakokinetik von Thyreostatika sind durch das Fehlen einfacher und empfindlicher Bestimmungsmethoden für diese Pharmaka in biologischen Flüssigkeiten erschwert.

2. Die Resorption von Carbimazol und — besonders — Methimazol ist erheblichen interindividuellen Schwankungen unterworfen.

3. Propylthiouracil, aber nicht Methimazol wird an Plasmaproteine gebunden.

4. Nach Gabe von Carbimazol ist nur Methimazol im Serum, Urin und Schilddrüsengewebe nachweisbar. Die Konversion von Carbimazol zu Methimazol scheint enzymatisch gesteuert zu werden. Die Methimazol-Plasmaspiegel sind nach Gabe von Carbimazol niedriger als nach Gabe einer gleichen Menge von Methimazol. 10 mg Carbimazol sind äquivalent zu 6–7 mg Methimazol.

5. Verteilung und Elimination von Methimazol und Propylthiouracil können durch ein Ein-Kompartment-System mit Eliminationsweg 1. Ordnung beschrieben werden. Die Plasmahalbwertszeit von Propylthiouracil beträgt etwa 1 h, die von Methimazol 2–6 h.

6. Thyreostatika werden in der Schilddrüse angereichert. Diese Anreicherung wird bei Labortieren durch Jodmangel gehemmt. Die Hemmung der Jodidorganifikation hängt mehr von der intrathyreoidalen als der Plasmakonzentration der Thyreostatika ab.

7. In der Schilddrüse werden die Thyreostatika schrittweise oxidiert und teilweise an Thyreoglobulin gebunden. Der Hauptmetabolit von PTU ist PTU-SO2H. Ein Methimazolmetabolit, das Methylthiohydantoin, kann im Plasma und im Urin nachgewiesen werden.

8. Propylthiouracil wird rasch an Glucuronsäure gekoppelt. Ein beträchtlicher Teil der Thyreostatika und ihrer Metabolite wird mit der Galle ausgeschieden und später reabsorbiert (enterohepatischer Kreislauf). Die faekale Ausscheidung ist sehr niedrig. Im Urin erscheinen geringe Mengen der nicht metabolisierten Substanzen zusammen mit Glucuroniden, Methylderivaten (nur bei Propylthiouracil) und unidentifizierten Metaboliten.

9. In der Schwangerschaft ist die Halbwertszeit von Methimazol verkürzt (nach vorläufigen Daten). Methimazol und Propylthiouracil durchqueren die Plazentaschranke und können im fetalen Blut und in der fetalen Schilddrüse nachgewiesen werden. Die Konzentrationen in der Muttermilch sind sehr gering, besonders bei Propylthiouracil.

10. Über die Änderungen der Thyreostatika-Pharmakokinetik während der Behandlung einer Hyperthyreose gibt es bisher nur unzureichende Daten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander WD, Evans V, McAuley A, Gallagher TF, Londono J (1969) Metabolism of35S-labelled antithyroid drugs in man. Br Med J II:290–291

    Google Scholar 

  • Aoki N, Pinnameneni KM, DeGroot LJ (1979) Studies on suppressor cell function in thyroid diseases. J Clin Endocrinol Metab 48:803–810

    Google Scholar 

  • Astwood EP (1943) Treatment of hyperthyroidism with thiourea and thiouracil. J Am Med Assoc 122:78–81

    Google Scholar 

  • Astwood EP (1944) Thiouracil treatment in hyperthyroidism. J Clin Endocrinol Metab 4:229–248

    Google Scholar 

  • Astwood EP, Bissell A, Hughes AM (1945) Further studies on the chemical nature of compounds which inhibit the function of the thyroid gland. Endocrinology 37:456–481

    Google Scholar 

  • Balzer J, Lahrtz H, van Zwieten PA (1975) Serumspiegel und Urinausscheidung von (14C-)Thiamazol bei Patienten mit Schilddrüsenüberfunktion. D Med Wochenschr 100:548–552

    Google Scholar 

  • Bending MR, Stevenson D (1978) Measurement of methimazole in human plasma using gas-liquid chromatography. J Chromatogr 154:267–271

    Google Scholar 

  • Chesny AM, Clawson TA, Webster B (1928) Endemic goiter in rabbits: incidence and characteristics. Bull Johns Hopkins Hospital 43:261–277

    Google Scholar 

  • Cooper DS, Ridgway EC, Saxe V, Lindsay RH, Maloof F (1980) Development of a radioimmunoassay for 6-propyl-2-thiouracil. VIIth International Thyroid Congress, Sydney, abstract 180

  • Crooks J, Hedley AJ, McNee C, Stevenson IH (1973) Changes in drug metabolizing ability in thyroid diseases. Br J Pharmacol 49:156–157

    Google Scholar 

  • Desbarats-Schönbaum ML, Endrenyi L, Koves E, Schönbaum E, Sellers EA (1972) On the action and kinetics of propylthiouracil. Eur J Pharmacol 19:104–111

    Google Scholar 

  • Eichelbaum M (1976) Drug metabolism in thyroid disease. Clin Pharmacokinet 1:339–350

    Google Scholar 

  • Ferguson MM, Marchant B, Alexander WD (1971) Localization of35S-propylthiouracil in thyroid. Lancet I:1025

    Google Scholar 

  • Freiesleben R, Kjernif-Jensen K (1947) The effect of thiouracil derivatives on fetuses and infants. J Clin Endocrinol metab 7:47–51

    Google Scholar 

  • Hallengren B, Forsgren A, Melander A (1980) Effects of antithyroid drugs on lymphocyte function in vitro. J Clin Endocrinol Metab 51:298–301

    Google Scholar 

  • Hayashi TT, Gilling B (1967) Placental transfer of thiouracil. Obstet Gynecol 30:736–740

    Google Scholar 

  • Hayashi TT, Teubner J, Gilling B (1970) Study of placental transfer of thiouracil derivatives. Am J Obstet Gynecol 108:723–728

    Google Scholar 

  • Hercus CE, Purves HD (1936) Studies on endemic and experimental goiter. J Hyg (Lond) 36:182–203

    Google Scholar 

  • Kampmann J, Skovsted L (1974) The pharmacokinetics of propylthiouracil. Acta Pharmacol Toxicol (Kbh) 35:361–369

    Google Scholar 

  • Kampmann J, Skovsted L (1975) The kinetics of propylthiouracil in hyperthyroidism. Acta Pharmacol Toxicol (Kbh) 37:201–210

    Google Scholar 

  • Kampmann JP, Johansen K, Hansen JM, Helweg J (1980) Propylthiouracil in human milk — revision of a dogma. Lancet I:736

    Google Scholar 

  • Lang JCT, Alexander WD (1980) Effect of iodine intake on the thyroid accumulation of propylthiouracil. J Mol Med 4:225–227

    Google Scholar 

  • Langer P, Greer MA (1977) Antithyroid substances and naturally occurring goitrogens. S. Karger, Basel

    Google Scholar 

  • Lawson A, Rimmington C, Searle CE (1951) Antithyroid activity of 2-carbethoxythio-1-methylglyoxaline. Lancet I:619–621

    Google Scholar 

  • Lawson A, Barry G (1951) Treatment of thyrotoxicosis with 2-carbethoxythio-1-methylglyoxaline. Lancet II:621

    Google Scholar 

  • Lazarus JH, Marchant B, Alexander WD, Clark DH (1975)35S-antithyroid drug concentration and organic binding of iodine in the human thyroid. Clin Endocrinol 4:609–613

    Google Scholar 

  • Lindsay RH, Hill JB, Kelly K, Vaughan A (1974a) Excretion of propylthiouracil and its metabolites in rat bile and urine. Endocrinology 94:1689–1698

    Google Scholar 

  • Lindsay RH, Aboul-Enein HY, Morel D, Bowen S (1974b) Synthesis and antiperoxidase activity of propylthiouracil derivatives and metabolites. J Pharmacol Sci 63:1383

    Google Scholar 

  • Lindsay RH, Hulsey BS, Aboul-Enein Y (1975a) Enzymatic S-methylation of 6-n-propyl-2-thiouracil and other antithyroid drugs. Biochem Pharmacol 24:463–468

    Google Scholar 

  • Lindsay RH, Hill JB, Kelly K (1975b) Regulation of thyroidal accumulation of propylthiouracil-14C and methimazole-14C. 57th Meeting of the Endocrine SOciety, Atlanta 1975, abstract 208

  • Lindsay RH, Kelly K, Hill JB (1979) Oxidative metabolites of 2-14C-propylthiouracil in rat thyroid. Endocrinology 104:1686–1697

    Google Scholar 

  • Low LCK, Lang J, Alexander WD (1979) Excretion of carbimazole and propylthiouracil in breast milk. Lancet II:1011

    Google Scholar 

  • Maloof F, Soodak M (1957) The uptake and metabolism of35S-thiourea and thiouracil by the thyroid and other tissues. Endocrinology 61:555–569

    Google Scholar 

  • Maloof F, Soodak M (1963) Intermediary metabolism of thyroid tissue and the action of drugs. Pharmacol Rev 15:45–95

    Google Scholar 

  • Marchant B, Alexander WD, Robertson JWK, Lazarus JH (1971) Concentration of35S-propylthiouracil by the thyroid gland and its relationship to anion trapping mechanism. Metabolism 20:989–999

    Google Scholar 

  • Marchant B, Alexander WD, Lazarus JH, Lees J, Clark DH (1972a) The accumulation of35S-antithyroid drugs by the thyroid gland. J Clin Endocrinol Metab 34:847–851

    Google Scholar 

  • Marchant B, Alexander WD (1972b) The thyroid accumulation, oxidation and metabolic fate of35S-methimazole in the rat. Endocrinology 91:747–756

    Google Scholar 

  • Marchant B, Papapetrou PD, Alexander WD (1975) Relation between thyroid iodine content and the accumulation and oxidation of35S-methimazole in the rat. Endocrinology 97:154–161

    Google Scholar 

  • Marchant B, Brownlie BEW, McKay Hart D, Horton PW, Alexander WD (1977) The placental transfer of propylthiouracil, methimazole and carbimazole. J Clin Endocrinol Metab 45:1187–1193

    Google Scholar 

  • Marchant B, Lees JFH, Alexander WD (1978) Antithyroid drugs. Pharmacol Ther Bull 3:305–358

    Google Scholar 

  • McGregor AM, Petersen MM, McLachlan SM, Rooke P, Smith BR, Hall R (1980) Carbimazole and the autoimmune response in Graves' disease. N Engl J Med 303:302–307

    Google Scholar 

  • McKenzie JB, McKenzie CG, McCollum EV (1941) Effect of sulfanilylguanidine on thyroid of rat. Science (New York) 94:518–519

    Google Scholar 

  • McMurray JF, Gilliland PF, Ratliff CR, Bowland PD (1975) Pharmacodynamics of propylthiouracil in normal and hyperthyroid subjects after a single oral dose. J Clin Endocrinol Metab 41:362–364

    Google Scholar 

  • Melander A, Hallengren B, Rosendal-Helgesen S, Sjöberg AK, Wahlin-Boll E (1980) Comparative in-vitro effects and in-vivo kinetics of antithyroid drugs. Eur J Clin Pharmacol 17:295–299

    Google Scholar 

  • Nagasaka A, Hidaka H (1976) Effect of antithyroid agents 6-propyl-2-thiouracil and 1 methyl-2-mercaptoimidazole on human thyroid iodide peroxidase. J Clin Endocrinol Metab 43:152–158

    Google Scholar 

  • Nakashima T, Taurog A, Riesco G (1978) Mechanism of action of thioureylene antithyroid drugs. Endocrinology 103:2187–2197

    Google Scholar 

  • Nakashima T, Taurog A (1979) Rapid conversion of carbimazole to methimazole in serum: evidence for an enzymatic mechanism. Clin Endocrinol 10:637–648

    Google Scholar 

  • Oberdisse K (1980) Die Hyperthyreose. In: Oberdisse K, Klein E, Reinwein D (eds) Die Krankheiten der Schilddrüse, 2nd edn. Thieme, Stuttgart, p 322

    Google Scholar 

  • Papapetrou PD, Marchant B, Gavras H, Alexander WD (1972) Biliary excretion of35S-labeled propylthiouracil, methimazole and carbimazole in untreated and pentobarbitone pretreated rats. Biochemical Pharmacology 21:363–377

    Google Scholar 

  • Papapetrou PD, Mothan S, Alexander WD (1975) Binding of the35S of35S-propylthiouracil by follicular thyroglobulin in vitro and in vivo. Acta endocrinol (Kbh) 79:248–258

    Google Scholar 

  • Peltola P, Krusius F (1969) Distribution of the sulphur-35-labeled goitrogen 5-vinyl-2-thio-oxazolidone in rat. Experientia 25:1328–1329

    Google Scholar 

  • Peterson RR, Young WC (1952) The problem of placental permeability for thyrotropin, propylthiouracil and thyroxine in the guinea pig. Endocrinology 50:218–225

    Google Scholar 

  • Pharmakokiotis AD, Alexander WD (1974) Repeated administration of35S-methimazole: pattern of accumulation and oxidation by the rat thyroid. Endocrinology 94:1508–1513

    Google Scholar 

  • Pinchera A, Liberti P, Martino E, Fenzi GF, Grasso L, Rovis L, Baschieri L, Doria G (1969) Effects of antithyroid therapy on the long-acting thyroid stimulator and the anti-thyroglobulin antibodies. J Clin Endocrinol Metab 29:231–238

    Google Scholar 

  • Pittman JA, Beschi RJ, Smitherman TC (1971) Methimazole: its absorption and excretion in man and tissue distribution in rats. J Clin Endocrinol Metab 33:182–185

    Google Scholar 

  • Poulsen LL, Hyslop RM, Ziegler DM (1974) S-oxidation of thioureylenes catalyzed by a microsomal flavorprotein mixed-function oxidase. Biochem Pharmacol 23:3431–3440

    Google Scholar 

  • Ratliff CR, Gilliland PF, Hall FF (1972) Serum propylthiouracil: determination by a direct colorimetric procedure. Clin Chem 18:1373–1375

    Google Scholar 

  • Richter CP, Clisby KH (1942) Toxic effects of bitter-tasting phenylthiocarbamide. Arch Pathol 33:46–57

    Google Scholar 

  • Sabbagha RE, Hayashi TT (1969) Transfer of14C-thiouracil during pregnancy. Am J Obstet Gynecol 103:121–127

    Google Scholar 

  • Schulman J (1950) The metabolic fate of thiourea in the thyroid gland. J Biol Chem 186:717–723

    Google Scholar 

  • Schuppan D, Riegelman S, von Lehmann B, Pilbrandt A, Becker C (1973) Preliminary pharmacokinetic studies of propylthiouracil in humans. J Pharmacokinet Biopharm 1:307–318

    Google Scholar 

  • Searle EC, Lawson A, Morley HV (1951) Antithyroid substances. 2. Some mercaptoglyoxalines, mercaptothiazoles and thiohydantoins. Biochem J 49:125–128

    Google Scholar 

  • Shepard TH (1963) Metabolism of thiourea-35S by the fetal thyroid gland of the rat. Endocrinology 72:223–230

    Google Scholar 

  • Shimmins J, Gillespie FC, Ors JS, Smith DA, Alexander WD (1969) The measurement of enteric absorption rate using a double tracer technique. Adv Biosci 5:157–167

    Google Scholar 

  • Sitar DS, Thornhill DP (1972) Propylthiouracil: Absorption, metabolism and excretion in the albino rat. J Pharmacol Exp Ther 183:440–448

    Google Scholar 

  • Sitar DS, Thornhill DP (1973) Methimazole: Absorption, metabolism and excretion in the albino rat. J Pharmacol Exp Ther 184:432–439

    Google Scholar 

  • Sitar DS, Hunninghake DB (1975) Pharmacokinetics of propylthiouracil after a single oral dose. J Clin Endocrinol Metab 40:26–29

    Google Scholar 

  • Sitar DS, Abu-Bakare A, Gardiner RJ, Ogilvie RI (1976) Effect of chronic administration of propylthiouracil on its disposition during the treatment of hyperthyroidism. In: Robbins J, Braverman LE (eds) Thyroid research. American Elsevier, New York, pp 425–428

    Google Scholar 

  • Skellern GG, Stenlake JB, Williams WD (1973) The absorption, distribution, excretion and metabolism of 2-14C-methimazole in rat. Xenobiotica 3:121–132

    Google Scholar 

  • Skellern GG, Stenlake JB, Williams WD, McLarty DG (1974) Plasma concentrations of methimazole, a metabolite of carbimazole, in hyperthyroid patients. Br J Clin Pharmacol 1:265–269

    Google Scholar 

  • Skellern GG, Knight BI, Stenlake JB (1976) Improved method for the determination of methimazole in plasma by high-performance liquid chromatography. J Chromatogr 124:405–410

    Google Scholar 

  • Skellern GG, Knight BL, Luman FM, Stenlake JB, McLarty DG, Hooper MJ (1977) Identification of 3-methyl-2-thiohydantoin, a metabolite of carbimazole, in man. Xenobiotica 7:247–253

    Google Scholar 

  • Skellern GG, Knight BI, Low CKL, Alexander WD, McLarty DG, Kalk WJ (1980a) The pharmacokinetics of methimazole after oral administration of carbimazole and methimazole in hyperthyroid patients. Br J Clin Pharmacol 9:137–143

    Google Scholar 

  • Skellern GG, Knight BI, Otter M, Low CKL, Alexander WD (1980b) The pharmacokinetics of methimazole in pregnant patients after oral administration of carbimazole. Br J Clin Pharmacol 9:145–147

    Google Scholar 

  • Slanina P, Ullberg S, Hammarstom L (1973) Distribution and placental transfer of14C-thiourea and14C-thiouracil in mice studied by whole body autoradiography. Acta Pharmacol Toxicol (Copenh) 132:358–368

    Google Scholar 

  • Stanley MM, Astwood EB (1977) Determination of relative activities of antithyroid compounds in man using radioactive iodine. Endocrinology 41:66–84

    Google Scholar 

  • Stanley MM, Astwood EB (1949) 1-methyl-2-mercaptoimidazole: an antithyroid compound highly active in man. Endocrinology 44:588–589

    Google Scholar 

  • Stenlake JB, Williams WD, Skellern GG (1970) Development and comparison of thin-layer chromatographic and gas-liquid chromatographic methods for measurement of methimazole in rat urine. J Chromatogr 53:285–291

    Google Scholar 

  • Taurog A (1976) The mechanism of action of the thioureylene antithyroid drugs. Endocrinology 98:1031–1046

    Google Scholar 

  • Vesell ES, Shapiro JR, Passananti GT, Jorgensen H, Shively CA (1975) Altered plasma half-lives of antipyrine, propylthiouracil and methimazole in thyroid dysfunction. Clin Pharmacol Ther 17:48–56

    Google Scholar 

  • Vestal RE (1978) Drug use in the elderly: a review of problems and special considerations. Drugs 16:358–382

    Google Scholar 

  • Wall JR, Wanwar GL, Greenwood DM, Walters BA (1976) The in-vitro suppression of lectin-induced3H-thymidine incorporation into DNA of peripheral blood lymphocytes after the addition of propylthiouracil. J Clin Endocrinol Metab 43:1406–1409

    Google Scholar 

  • Weiss RM, Noback CR (1949) The effects of thyroxine and thiouracil on the time of appearance of ossification center of rat fetuses. Endocrinology 45:389–395

    Google Scholar 

  • Williams RH, Kay GA (1947) Thiouracils and thiourea: comparison of the absorption, distribution and excretion. Arch Int Med 80:37–52

    Google Scholar 

  • Wilson JT, Brown RD, Cherek DR, Dailey JW, Hilman B, Jobe PC, Manno BR, Redetzki HM, Stewart JJ (1980) Drug excretion in human breast milk. Principles, pharmacokinetics and projected consequences. Clin Pharmacokinet 5:1–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by: Ministerium für Wissenschaft und Forschung, NRW

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benker, G., Reinwein, D. Pharmacokinetics of antithyroid drugs. Klin Wochenschr 60, 531–539 (1982). https://doi.org/10.1007/BF01724208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01724208

Key words

Schlüsselwörter

Navigation