Skip to main content
Log in

Receptor-mediated low-density lipoprotein catabolism

Der rezeptorabhängige Abbau von Low Density Lipoprotein

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Low-density lipoprotein (LDL) receptors are demonstrable in cultured fibroblasts from normal subjects but are decreased or absent in cells from patients with heterozygous or homozygous familial hypercholesterolaemia. In vivo receptor-mediated LDL catabolism, determined as the difference between the turnover rates of125I-LDL and131I-LDL coupled with cyclohexanedione, is responsible for approximately one-third of the total catabolism of LDL in normal subjects, but less than one-fifth in heterozygotes and is totally absent in homozygotes. Receptor-mediated catabolism can be stimulated in normal subjects and in heterozygotes by measures that promote bile acid synthesis, namely, administration of anion-exchange resins or creating a partial ileal bypass. Studies in dogs have shown that such measures stimulate the high-affinity binding of LDL by liver cell mebranes. Taken together, these observations suggest the existence of LDL receptors in human liver, the function of which is to maintain cholesterol homeostasis within the hepatocyte during periods of increased demand. Partial or complete absence of such hepatic receptors may play a major role in the pathogenesis of familial hypercholesterolaemia.

Zusammenfassung

LDL-Rezeptoren lassen sich an Fibroblasten von Normalpersonen in der Gewebekultur nachweisen. An Zellen von Patienten mit heterozygoter oder homozygoter familiärer Hypercholesterinämie sind sie jedoch vermindert oder nicht vorhanden. In vivo kann der rezeptorabhängige LDL-Abbau durch die Differenz der Turnover-Raten von125I-LDL und131I-LDL, gekoppelt mit Cyclohexandion, bestimmt werden. Er beträgt bei Normalpersonen etwa ein Drittel des Gesamtabbaues, bei heterozygoten familiären Hypercholesterinämikern jedoch weniger als ein Fünftel. Homozygoten fehlt dieser Abbauweg völlig. Maßnahmen, die die Gallensäuresynthese anregen, wie Gabe von Anionenaustauscherharzen oder partielle Ileum-Bypass Operation, steigern bei Normalpersonen und Heterozygoten den rezeptorabhängigen LDL-Abbau, nicht dagegen bei Homozygoten. Untersuchungen an Hunden konnten zeigen, daß die so induzierte Gallensäureelimination die hochaffine Bindung von LDL durch Leberzellmembranen stimuliert. Diese Zusammenhänge legen die Existenz von LDL-Rezeptoren in der menschlichen Leber nahe, deren Funktion die Aufrechterhaltung der Cholesterin-Homöostase bei erhöhten Cholesterinbedarf ist. Teilweises oder totales Fehlen dieser Leberrezeptoren spielt vermutlich eine wichtige Rolle in der Pathogenese der familiären Hypercholesterinämie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RGW, Goldstein JL, Brown MS (1976) Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc Natl Acad Sci USA 73:2434–2438

    Google Scholar 

  • Assman G, Brown GB, Mahley RW (1975) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured swine aortic smooth muscle cells by plasma lipoproteins. Biochemistry 14:3996–4002

    Google Scholar 

  • Avigan J, Bhathena SJ, Schreiner ME (1975) Control of sterol synthesis and of hydroxy-methyl-glutaryl CoA reductase in skin fibroblasts grown from patients with homozygous type II hyperlipoproteinemia. J Lipid Res 16:151–154

    Google Scholar 

  • Beaumont V, Jacotot B, Beaumont JL (1976) Ischemic disease in men and women with familial hypercholesterolaemia and xanthomatosis. Atherosclerosis 24:441–450

    Google Scholar 

  • Bersot TP, Mahley RW, Brown MS, Goldstein JL (1976) Interaction of swine lipoproteins with the low density lipoprotein receptor in human fibroblasts. J Biol Chem 251:2395–2398

    Google Scholar 

  • Brown MS, Faust JR, Goldstein JL (1975) Role of the low density lipoprotein receptor in regulation the content of free and esterified cholesterol in human fibroblasts. J Clin Invest 55:783–793

    Google Scholar 

  • Brown MS, Kovanen PT, Goldstein JL (1979) Receptor-mediated uptake of liproprotein-cholesterol and its utilisation for steroid synthesis in the adrenal cortex. Recent Progress in Hormone Research, vol 35. Academic Press, New York

    Google Scholar 

  • Chait A, Bierman EL, Albers JJ (1979) Regulatory role of triiodthyronine in the degradation of low density lipoprotein by cultured human skin fibrolblasts. J Clin Endocrinol Metab 48:887–889

    Google Scholar 

  • Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with over-production of cholesterol. Proc Natl Acad Sci USA 70:2804–2808

    Google Scholar 

  • Goldstein JL, Brown MS (1974) Binding and degradation of low density lipoproteins by cultured human fibroblasts. J Biol Chem 249:5153–5162

    Google Scholar 

  • Goldstein JL, Dana SE, Brown MS (1974) Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc Natl Acad Sci USA 71:4288–4292

    Google Scholar 

  • Goldstein JL, Brown MS (1975) Familial hypercholesterolaemia. A genetic regulatory defect in cholesterol metabolism. Am J Med 58:147–150

    Google Scholar 

  • Goldstein JL, Dana SE, Brunschede GY, Brown JJ (1975) Genetic heterogeneity in familial hypercholesterolemia: evidence for two different mutations affecting functions of low density lipoprotein receptor. Proc Natl Acad Sci USA 72:1092–1096

    Google Scholar 

  • Goldstein JL, Brown MS (1977) The low-density lipoprotein pathway and its relation to atherosclerosis. Ann Rev Biochem 46:897–930

    Google Scholar 

  • Hirvonen E, Malkonen M, Maninnen V (1981) Effects of different progesterones on lipoproteins during post menopausal replacement therapy. N Engl J Med 304:560–563

    Google Scholar 

  • Innerarity TL, Mahley RW (1978) Enhanced binding by cultured human fibroblasts of apo-E containing lipoproteins as compared with low density lipoproteins. Biochemistry 17:1440–1447

    Google Scholar 

  • Keller CH, Spengel F, Wieczorek A, Wolfram G, Zöllner N (1981a) Familial hypercholesterolemia: A family with divergence of clinical phenotype and biochemical genotype based on fibroblast studies. Ann Nutr Metab 25:79–84

    Google Scholar 

  • Keller CH, Harders-Spengel K, Spengel F, Wieczorek A, Wolfram G, Zöllner N (1981) Serum cholesterol levels in patients with familial hypercholesterolemia confirmed by tissue culture. Atherosclerosis 39:51–59

    Google Scholar 

  • Kovanen PT, Brown MS, Goldstein JL (1979) Increased binding of low density lipoprotein to liver membranes from rats treated with 17α-Ethinyl estradiol. J Biol Chem 254, 22:11367–11373

    Google Scholar 

  • Kovanen PT, Bilheimer DW, Goldstein JL, Jaramillo JJ, Brown MS (1981) Regulatory role for heptic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci USA 78:1194–1198

    Google Scholar 

  • Mahley RW, Innerarity TL, Pitas RE, Weisgraber KH, Brown JH, Gross E (1977) Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem 252:7279–7287

    Google Scholar 

  • Mahley RW, Weisgruber KW, Melchior GW, Innerarity TL, Holcombe KS (1980) Inhibition of receptor-mediated clearance of lysine and arginine-modified lipoproteins from the plasma of rats and monkeys. Proc Natl Acad Sci USA 77:225–229

    Google Scholar 

  • McFarlane AS (1964) Metabolism of plasma proteins. In: Munro HN, Allison JB (eds) Protein metabolism, appendix XIV. Academic Press, New York, p 331

    Google Scholar 

  • Miettinen TA, Lempinen M (1977) Cholestyramine and ileal bypass in the treatment of familial hypercholesterolaemia. Eur J Clin Invest 7:509–514

    Google Scholar 

  • Moutafis CD, Simons LA, Myant NB, Adams PW, Wynn V (1977) The effects of cholestryramine on the faecal excretion of bile acids and neutral steroids in familial hypercholesterolaemia. Atherosclerosis 26:329–337

    Google Scholar 

  • Oliver MF, Boyd GS (1956) Endocrine aspects of coronary sclerosis Lancet 2:1273–1276

    Google Scholar 

  • Orci L, Carpentier JL, Perreley A, Anderson RGW, Goldstein JL, Brown MS (1978) Occurence of low density lipoprotein receptors within large pits on the surface of human fibroblasts as demonstrated by freeze-etching. Exp Cell Res 113:1–13

    Google Scholar 

  • Russell D, Fritz V, Mieny C, Mendelsohn D, Joffe BI, Seftel HC (1979) Treatment of familial hypercholesterolaemia by partial ileal bypass. SA Med J 55:237–240

    Google Scholar 

  • Shepherd J, Bicker S, Lorimer AR, Packard CJ (1979) Receptor-mediated low density lipoprotein catabolism in man. J Lipid Res 20:999–1006

    Google Scholar 

  • Shepherd J, Packard CJ, Bicker S, Lawrie TDV, Morgan HG (1980) Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N Engl J Med 302:1219–1222

    Google Scholar 

  • Sigurdsson G, Nicoll A, Lewis B (1976a) The metabolism of low density lipoprotein in endogenous hypertriglyceridaemia. Eur J Clin Invest 6:151–158

    Google Scholar 

  • Sigurdsson G, Nicoll A, Lewis B (1976b) Metabolism of very low density lipoproteins in hyperlipidaemia: studies of apolipoprotein B kinetics in man. Eur J Clin Invest 6:167–177

    Google Scholar 

  • Slack J (1969) Risks of ischaemic heart-disease in familial hyperlipoproteinaemic states. Lancet 1380–1382

  • Spengel FA, Jadav A, Duffield RGM, Wood CB, Thompson GR (1981) Cholesterol reduction in familial hypercholesterinaemia: superiority of partial ileal bypass over cholestyramine. Lancet II:768–770

    Google Scholar 

  • Thompson GR, Soutar AK, Spengel FA, Jadhav A, Gavigan SJP, Myant NB (1981) Defects of receptor-mediated low density lipoprotein catabolism in homozygous familial hypercholesterolemia and hypothyroidism in vio. Proc Natl Acad Sci USA 78:591–2595

    Google Scholar 

  • Thompson GR (1981) Catabolism of low density lipoprotein. In: Pernow B, Carlson LA (eds) Metabolic risk factors and ischaemic CV disease. Raven Press, New York, pp 73–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spengel, F.A., Thompson, G.R. Receptor-mediated low-density lipoprotein catabolism. Klin Wochenschr 60, 319–325 (1982). https://doi.org/10.1007/BF01721621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01721621

Key words

Schlüsselwörter

Navigation