Skip to main content
Log in

Kardiale Wirkungen von Adenosin

Cardiac effect of adenosine: Mechanism of action, pathophysiological role and clinical implications

Wirkungsmechanismus, pathophysiologische und klinische Bedeutung

  • Übersicht
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Adenosine has a negative inotropic effect in cardiacatrial preparations (“direct” negative inotropic effect). This effect is probably due to an activation of a potassium outward current which shortens the action potential duration and hence reduces the force of contraction. A pertussis toxin-sensitive N-protein is involved in the signal transduction from the adenosine receptor to atrial potassium channels. Inventricular cardiac preparations adenosine has no negative or even a weak positive inotropic effect, but it reduces the force of contraction in the presence of cAMP-increasing agents such as isoprenaline (“indirect” negative inotropic effect). This effect is due to an inhibition of the slow Ca2+ inward current which has previously been enhanced by an increase in the cellular cAMP content. This “indirect” negative inotropic effect of adenosine is also present in the human heart. Since increased amounts of adenosine are released during cardiac stimulation via β-adrenoceptors, the “indirect” effect might protect the heart against excessive stimulation by catecholamines. In addition, adenosine has negative chronotropic actions and prolongs AV conduction by an activation of potassium channels or an inhibition of the slow Ca2+ inward current (AV node). Cardiac bradyarrhythmias in hypoxia have been attributed to an increased formation and release of adenosine. Furthermore, adenosine has been shown to terminate supraventricular tachycardias involving the AV node. Since it has a very short duration of action it might prove safe and hence advantageous to conventional therapy in the treatment of supraventricular tachycardias.

Zusammenfassung

Zusammenfassend läßt sich sagen, daß Adenosin am Vorhof negativ inotrop wirkt (direkter negativ inotroper Effekt). Am Ventrikel wirkt Adenosin nur bei Erhöhung des zellulären cAMP-Gehaltes durch Stimulation der Adenylatcyclase oder Hemmung der Phosphodiesterase negative inotrop (indirekter negative inotroper Effekt). Diese Wirkung ist von einer Abnahme des langsamen Ca2+-Einwärtsstromes begleitet. Ob diese Abnahme mit einer Hemmung der Adenylatcyclase erklärt werden kann oder ob Mechanismen, die der cAMP-Bildung nachgeschaltet sind (z.B. Hemmung cAMP-abhängiger Proteinkinasen, Aktivierung von Proteinphosphatasen), eine Rolle spielen, ist bisher umstritten. Der indirekte negativ inotrope Effekt konnte kürzlich auch an isoliertem menschlichen Ventrikelmyokard nachgewiesen werden, so daß Adenosin möglicherweise auch am menschlichen Herzen eine Rolle als physiologischer Feedback-Hemmstoff bei exzessiver Katecholaminstimulation und bei Hypoxie spielen könnte. Diese Hemmung einer Stimulation kardialer β-Adrenozeptoren könnte eine antiarrhythmische Wirkung bei katecholamininduzierten Tachyarrhythmien bewirken. Eine defekte adenosinvermittelte Regulation des Herzens könnte schließlich auch eine Bedeutung in der Pathogenese von Herzerkrankungen wie der hypertrophen Kardiomyopathie haben. Hierüber liegen allerdings keine klinischen oder experimentellen Daten vor. Andererseits wirkt Adenosin negativ chronotrop und dromotrop und vermittelt wahrscheinlich bradykarde Herzrhythmusstörungen während myokardialer Hypoxie. Entsprechend seiner negativ dromotropen Wirkung eignet es sich zur Therapie von supraventrikulären Tachykardien mit Beteiligung des AV-Knotens. Seine kurze Wirkdauer läßt es als vorteilhaft gegenüber einer konventionellen Therapie mit Ca2+-Antagonisten erscheinen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

s:

Sekunde

mN:

Millinewton

mV:

Millivolt

cAMP:

cyclisches Adenosin-3′,5′-monophosphat

cGMP:

cyclisches Guanosin-3′,5′-monophosphat

PIA:

(-)-N6-Phenylisopropyladenosin

NECA:

5′-N-Äthylcarboxamidadenosin

Literatur

  1. Baer HP, Muller MJ, Munishi R (1982) Adenosine receptors in smooth muscle. Naunyn-Schmiedeberg's Arch Pharmacol 321:R 10

  2. Baer HP, Muller MJ, Friend R, Murji A, Munshi R (1985) Mechanism of action of adenosine and adenosine derivatives in smooth muscle: involvement of adenylate cyclase? In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 247–260

    Google Scholar 

  3. Bagdonas AA, Stuckey JH, Plera J, Amer NS, Hoffmann BF (1961) Effects of ischemia and hypoxia on the specialized conducting system of the canine heart. Am Heart J 61:206–218

    Google Scholar 

  4. Baumann G, Schrader J, Gerlach E (1981) Inhibitory action of adenosine on histamine- and dopamine-stimulated cardiac contractility and adenylate cyclase in guinea pigs. Circ Res 48:258–266

    Google Scholar 

  5. Belardinelli L, Belloni FL, Rubio R, Berne RM (1980) Atrioventricular conduction disturbances during hypoxia: Pssible role of adenosine in rabbit and guinea-pig heart. Circ Res 47:684–691

    Google Scholar 

  6. Belardinelli L, Mattos EC, Berne RM (1981) Evidence for adenosine mediation of atrioventricular block in ischemic canine myocardium. J Clin Invest 68:195–205

    Google Scholar 

  7. Belardinelli L, Fenton R, West A, Linden J, Althaus JS, Berne RM (1982) Extracellular action of adenosine and the antagonism by aminophylline on the atrioventricular conduction in the isolated perfused guinea pig and rat hearts. Circ Res 51:569–579

    Google Scholar 

  8. Belardinelli L, Vogel S, Linden J, Berne RM (1982) Antiadrenergic actions of adenosine on ventricular myocardium in embryonic chick hearts. J Mol Cell Cardiol 14:291–294

    Google Scholar 

  9. Belardinelli L, Isenberg G (1983) Isolated atrial myocytes: Adenosine and acetylcholine increase potassium conductance. Am J Physiol 244:H734–H737

    Google Scholar 

  10. Belardinelli L, West A, Crampton R, Berne RM (1983) Chronotropic and dromotropic effects of adenosine. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. pp 377–398. Martinus Nijhoff Publishers, The Hague Boston London

    Google Scholar 

  11. Belhassen B, Pelleg A, Shoshani D, Geva B, Laniado S (1983) Electrophysiologic effects of adenosine-5′-triphosphate on atrioventricular reentrant tachycardia. Circulation 68:827–833

    Google Scholar 

  12. Belhassen B, Pelleg A (1984) Electrophysiological effects of adenosine triphosphate and adenosine in the mammalian heart: Clinical and experimental aspects. J Am Coll Cardiol 4:414–424

    Google Scholar 

  13. Belhassen B, Pelleg A (1984) Acute management of paroxysmal supraventricular tachycardia: Verapamil, adenosine triphosphate or adenosine? Am J Cardiol 54:225–227

    Google Scholar 

  14. Benditt DG, Benson DW Jr, Kreitt J, Dunnigan A, Pritzker MR, Crouse L, Scheinmann MM (1983) Electrophysiologic effects of theophylline in young patients with recurrent symptomatic bradyarrhythmias. Am J Cardiol 52:1223–1229

    Google Scholar 

  15. Berne RM (1963) Cardiac nucleotides in hypoxia: Possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    Google Scholar 

  16. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    Google Scholar 

  17. Berne RM, DiMarco JP, Belardinelli L (1984) Dromotropic effects of adenosine and adenosine antagonists in the treatment of cardiac arrhythmias involving the atrioventricular node. Circulation 69:1195–1197

    Google Scholar 

  18. Berne RM, Belardinelli L (1984) Effects of hypoxia and ischemia on coronary vascular resistance, A-V node conduction and S-A node excitation. Acta Med Scand (Suppl) 694:9–19

    Google Scholar 

  19. Böhm M, Brückner R, Hackbarth I, Haubitz B, Linhart R, Meyer W, Schmidt B, Schmitz W, Scholz H (1984) Adenosine inhibition of catecholamine-induced increase in force of contraction in guinea-pig atrial and ventricular heart preparations. Evidence against a cyclic AMP- and cyclic GMP-dependent effect. J Pharmacol Exp Ther 230:483–492

    Google Scholar 

  20. Böhm M, Brückner R, Meyer W, Nose M, Schmitz W, Scholz H, Starbatty J (1985) Evidence for adenosine receptor-mediated isoprenaline-antagonistic effects of the adenosine analogs PIA and NECA on force of contraction in guinea-pig atrial and ventricular cardiac preparations. Naunyn-Schmiedeberg's Arch Pharmacol 331:131–139

    Google Scholar 

  21. Böhm M, Burmann H, Meyer W, Schmitz W, Scholz H (1985) Positive inotropic effects of Bay K 8644: cAMP-independence and lack of inhibitory effect of adenosine. Naunyn-Schmiedeberg's Arch Pharmacol 329:447–450

    Google Scholar 

  22. Böhm M, Meyer W, Mügge A, Schmitz W, Scholz H (1985) Functional evidence for the existence of adenosine receptors in the human heart. Eur J Pharmacol 116:323–326

    Google Scholar 

  23. Böhm M, Wilken A (1986) Pertussis toxin pretreatment prevents adenosine- and carbachol-mediated AV conduction block in guinea-pig hearts. Naunyn-Schmiedeberg's Arch Pharmacol 332:R 46

    Google Scholar 

  24. Böhm M, Brückner R, Neumann J, Schmitz W, Scholz H, Starbatty J (1986) Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. Naunyn-Schmiedeberg's Arch Pharmacol 332:403–405

    Google Scholar 

  25. Böhm M, Mende U, Schmitz W, Scholz H (1986) Increased sensitivity to α-adrenoceptor stimulation but intact muscarinergic and purinergic effects in prehypertensive cardiac hypertrophy of spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 333:284–289

    Google Scholar 

  26. Böhm M, Mende U, Schmitz W, Scholz H (1986) Does an impaired adenosine-mediated feed back control play a role in the pathogenesis of hereditary dystrophic cardiomyopathy of the Syrian hamster? Cardiovasc Res 20:568–573

    Google Scholar 

  27. Boulanger J-P, Marangos PJ, Patel J, Uhde TW, Post RM (1984) Central adenosine receptors: Possible involvement in the chronic effects of caffeine. Psychopharmacol Bull 20:431–435

    Google Scholar 

  28. Brückner R, Fenner A, Meyer W, Nobis T-M, Schmitz W, Scholz H (1985) Cardiac effects of adenosine and adenosine analogs in guinea-pig atrial and ventricular preparations. Evidence against a role of cAMP and cGMP. J Pharmacol Exp Ther 234:766–774

    Google Scholar 

  29. Bruns RF, Daly JW, Snyder SH (1983) Adenosine receptor binding: Structure activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci USA 50:2077–2080

    Google Scholar 

  30. Chiba S, Himori N (1975) Different inotropic responses to adenosine on the atrial and ventricular muscle of the dog heart. Jpn J Pharmacol 25:489–491

    Google Scholar 

  31. Cockcroft S, Gomperts BD (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314:534–536

    Google Scholar 

  32. Collis MG (1983) Evidence forA 1-adenosine receptors in the guinea-pig atrium. Br J Pharmacol 78:207–212

    Google Scholar 

  33. Collis MG, Saville VL (1984) An investigation of the negative chronotropic effect of adenosine in the guinea-pig atrium. Br J Pharmacol 83:413

    Google Scholar 

  34. Cranefield PF (1975) The conduction of the cardic impulse. Futura Publishing company, Mount Kisko New York, pp 75–115

    Google Scholar 

  35. de Gubareff T, Sleator W (1965) Effects of caffeine on mammalian atrial muscle and its interaction with adenosine and calcium. J Pharmacol Exp Ther 148:201–214

    Google Scholar 

  36. DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L (1983) Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardias. Circulation 68:1254–1263

    Google Scholar 

  37. DiMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, Belardinelli L (1985) Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. J Am Coll Cardiol 6:417–425

    Google Scholar 

  38. Dobson JG jr (1978) Reduction by adenosine of the isoproterenol-induced increase in cyclic adenosine-3′,5′-monophosphate formation and glycogen phosphorylase activity in rat heart muscle. Circ Res 43:785–792

    Google Scholar 

  39. Dobson JG jr (1983) Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res 52:151–160

    Google Scholar 

  40. Dobson JG jr, Ordway W, Fenton RA (1986) Endogenous adenosine inhibits catecholamine contractile responses in normoxic hearts. Am J Physiol 251:H455–H462

    Google Scholar 

  41. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237

    Google Scholar 

  42. Endoh M, Yamashita S (1980) Adenosine antagonizes the inotropic action mediated via β- but not α-adrenoceptors in the rabbit papillary muscle. Eur J Pharmacol 65:445–448

    Google Scholar 

  43. Endoh M, Maruyama M, Taira N (1983) Modification by islet-activating protein of direct and indirect inhibitory actions of adenosine on rat atrial contraction in relation to cyclic nucleotide metabolism. J Cardiovasc Pharmacol 5:131–142

    Google Scholar 

  44. Endoh M, Maruyama M, Taira N (1983) Adenosine-induced changes in rate of beating and cyclic nucleotide levels in rat atria: Modification by islet-activating protein. In: Daly JW, Kuroda Y, Phillis JW, Shimizu H, Ui M (eds) Physiology and pharmacology of adenosine. Raven press, New York, pp 127–140

    Google Scholar 

  45. Endoh M, Maruyama M, Ijima T (1985) Attentuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. Am J Physiol 249:H309–H320

    Google Scholar 

  46. Evans DB, Schenden JA, Bristol JA (1982) Adenosine receptors mediating cardiac depression. Life Sci 31:2425–2432

    Google Scholar 

  47. Favale S, Di Biase M, Rizzo U, Belardinelli L, Rizzon P (1985) Effect of adenosine and adenosine-5-triphosphate on atrioventricular conduction in patients. J Am Coll Cardiol 5:1212–1219

    Google Scholar 

  48. Fernandez-Rivera-Rio L, Gonzalez-Garcia MaR (1985) The human erythrocyte ghost: A new experimental model for studying adenosine transport. Arch Biochem Biophys 240:246–256

    Google Scholar 

  49. Foley DH, Herlihy JT, Thompson CI, Rubio R, Berne RM (1978) Increased adenosine formation by rat myocardium with acute aortic constriction. J Mol Cell Cardiol 10:293–300

    Google Scholar 

  50. Fox AC, Reed GE, Glassman E, Kaltman AJ, Silk BB (1974) Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest 53:1447–1457

    Google Scholar 

  51. Fredholm BB (1985) Adenosine and central catecholamine neurotransmission. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 91–106

    Google Scholar 

  52. Fredholm BB, Sollevi A (1986) Cardiovascular effects of adenosine. Clin Physiol 6:1–21

    Google Scholar 

  53. Gomperts BD (1983) Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature 306:64–66

    Google Scholar 

  54. Grossman A, Furchgott RF (1964) The effect of various drugs on calcium exchange in the isolated guinea-pig left auricle. J Pharmacol Exp Ther 145:162–172

    Google Scholar 

  55. Hazeki O, Ui M (1981) Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem 256:2856–2862

    Google Scholar 

  56. Hollander P, Webb JL (1957) Effects of adenine nucleotides on the contractility and membrane potentials of rat atrium. Circ Res 5:349–353

    Google Scholar 

  57. Honey RM, Richie WT, Thomson WAR (1930) The action of adenosine on the human heart. Q J Med 23:485–489

    Google Scholar 

  58. Hopkins SV (1973) The potentiation of the action of adenosine on the guinea-pig heart. Biochem Pharmacol 22:341–348

    Google Scholar 

  59. Hosey MM, McMahon KK, Green RD (1984) Inhibitory adenosine receptors in the heart: Characterization by radioligand binding studies and effects on β-adrenergic stimulated adenylate cyclase and membrane proteine phosphorylation. J Mol Cell Cardiol 16:931–942

    Google Scholar 

  60. Huang M, Drummond GI (1976) Effects of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol 25:2713–2719

    Google Scholar 

  61. Huang M, Drummond GI (1978) Interaction between adenosine and catecholamines on cyclic AMP accumulation in guinea pig ventricular myocardium. Biochem Pharmacol 27:187–191

    Google Scholar 

  62. Huang M, Drummond GI (1978) Effect of adenosine and catecholamines on cyclic AMP levels in guinea pig hearts. Adv Cyclic Nucleotide Res 9:341–353

    Google Scholar 

  63. Hughes PR, Stone TW (1983) Inhibition by purines of the inotropic action of isoprenaline in rat atria. Br J Pharmacol 80:149–153

    Google Scholar 

  64. Hutter OF, Rankin OC (1982) Increase by adenosine and adenine nucleotides in potassium permeability in sinus venosus of tortoise heart. J Physiol (Lond) 329:57P-58P

    Google Scholar 

  65. Isenberg G, Belardinelli L (1984) Ionic basis for the antagonism between adenosine and isoproterenol on isolated ventricular myocytes. Circ Res 55:309–325

    Google Scholar 

  66. Jakobs AJ, Aktories K, Schultz G (1984) Mechanism of pertussis toxin action on the adenylate cyclase system. Eur J Biochem 140:177–181

    Google Scholar 

  67. Jochem G, Nawrath H (1983) Adenosine activates a potassium conductance in atrial heart muscle. Experientia 39:1347–1349

    Google Scholar 

  68. Johnson EA, McKinnon MG (1956) Effect of acetylcholine and adenosine on cardiac cellular potentials. Nature (London) 178:1174–1175

    Google Scholar 

  69. Klabunde RE (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 93:21–26

    Google Scholar 

  70. Leclerq JF, Coumel P (1978) Les effects de l'adenosine triphosphorique (ATP) sur le noeud sinusual et le noeud auriculo-ventriculaire chez l'homme Variation selon le lieu d'injection. Ceour Med Interne 17:541–546

    Google Scholar 

  71. Linden J, Hollen CE, Patel A (1985) The mechanism by which adenosine and cholinergic agents reduce contractility in rat myocardium. Correlation with cyclic adenosine monophosphate and receptor densities. Circ Res 56:728–735

    Google Scholar 

  72. Lohse MJ, Lenschow V, Schwabe U (1984) Two affinity states of adenosine Ri receptors in brain: Analysis of guanine nucleotide and temperature effects. Mol Pharmacol 26:1–9

    Google Scholar 

  73. Lohse MJ, Ukena D, Schwabe U (1985) Demonstration of Ri-type adenosine receptors in bovine myocardium by radioligand binding. Naunyn-Schmiedeberg's Arch Pharmacol 328:310–316

    Google Scholar 

  74. Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486

    Google Scholar 

  75. Londos C, Wolff J, Cooper DMF (1979) Action of adenosine on adenylate cyclase. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven Press, New York, pp 271–281

    Google Scholar 

  76. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Google Scholar 

  77. Malbon CC, Mangano TJ, Watkins DC (1985) Heart contains two substrates (Mr=40,000 and Mr=41,000) for pertussis toxin-catalyzed ADP-ribosylation that co-purify with Ns. Biochem Biophys Res Comm 128:809–815

    Google Scholar 

  78. McKenzie SJ, Frew R, Bär HP (1977) Characteristics of the relaxant response of adenosine and its analogs in the intestinal smooth muscle. Eur J Pharmacol 41:183–192

    Google Scholar 

  79. McKenzie SJ, Frew R, Bär HP (1977) Effect of adenosine and related compounds on adenylate cyclase and cyclic AMP levels in smooth muscle. Eur J Pharmacol 41:193–202

    Google Scholar 

  80. McKenzie JE, McCoy FP, Bockman EL (1981) Myocardial adenosine and coronary resistance during increased cardiac performance. Am J Physiol 239:H509–515

    Google Scholar 

  81. Meinertz T, Nawrath H, Scholz H (1973) Influence of cyclization and acyl substitution on the inotropic effects of adenine nucleotides. Naunyn-Schmiedeberg's Arch Pharmacol 278:165–178

    Google Scholar 

  82. Nakamura T, Ui M (1984) Islet-activating protein, pertussis toxin, inhibits Ca2+-induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells. FEBS Lett 173:414–418

    Google Scholar 

  83. Nawrath H (1976) Cyclic AMP and cyclic GMP may play opposing roles in influencing force of contraction in mammalian myocardium. Nature (Lond) 262:509–511

    Google Scholar 

  84. Nawrath H, Jochem G, Sack U (1985) Inotropic effects of adenosine in guinea-pig myocardium. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 323–340

    Google Scholar 

  85. Pelleg A (1985) Cardiac cellular electrophysiological effects of adenosine and adenosine triphosphate. Am Heart J 110:688–693

    Google Scholar 

  86. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    Google Scholar 

  87. Radulovacki M (1985) Role of adenosine in sleep in rats. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 211–220

    Google Scholar 

  88. Rockoff JB, Dobson JG jr (1980) Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility. Am J Physiol 239:H365–H370

    Google Scholar 

  89. Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22

    Google Scholar 

  90. Schmitz W, Böhm M, Brückner R, Burmann H, Meyer W, Neumann J, Nose M, Scholz H (1985) Relationship between the effects of cAMP-increasing agents and adenosine in the mammalian heart. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 295–305

    Google Scholar 

  91. Scholz H, Böhm M, Meyer W, Schmitz W (1986) On the mechanism of the cardiotonic and smooth muscle relaxant effects of the methylxanthines. In: Bader H, Gietzen H, Rosenthal L, Rüdel R, Wolf HU (eds) Intracellular calcium regulation. Manchester University Press, Manchester, pp 447–460

    Google Scholar 

  92. Schrader J, Rubio R, Berne RM (1975) Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: A possible effect on Ca2+ influx. J Mol Cell Cardiol 7:427–433

    Google Scholar 

  93. Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflügers Arch 372:29–35

    Google Scholar 

  94. Schrader J, Haddy FJ, Gerlach E (1977) Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflügers Arch 369:1–6

    Google Scholar 

  95. Schrader J, Nees S, Gerlach E (1977) Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Pflüger's Arch 369:251–257

    Google Scholar 

  96. Schütz W, Tuisl E (1981) Evidence against adenylate cyclase-coupled adenosine receptors in the guinea pig heart. Eur J Pharmacol 76:285–288

    Google Scholar 

  97. Schwabe U (1983) General aspects of binding of ligands to adenosine receptors. In: Berne RM, Rall TW, Rubio R (eds) Regulatory functions of adenosine. Martinus Nijhoff Publishers, The Hague, Boston, London, pp 77–96

    Google Scholar 

  98. Schwabe U (1985) Classification of adenosine receptors. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: Receptors and modulation of cell function. IRL Press, Oxford, pp 15–28

    Google Scholar 

  99. Senges J, Mizutani T, Pelzer D, Brachmann J, Sonnhof U, Kübler W (1979) Effect of hypoxia on the sinuatrial node, atrium, and atrioventricular node in the rabbit heart. Circ Res 44:856–863

    Google Scholar 

  100. Shah A, Kechejian SJ, Kavaler F, Fisher VJ (1974) Effects of adenine nucleotides on contractility of normal and post-ischemic myocardium. Am Heart J 87:740–749

    Google Scholar 

  101. Snyder SH, Sklar P (1984) Behavioral and molecular actions of caffeine: Focus on adenosine. J Psychiat Res 18:92–106

    Google Scholar 

  102. Sparks HV, Bardenheuer H (1986) Regulation of adenosine formation by the heart. Circ Res 58:193–201

    Google Scholar 

  103. Szentmiklósi AJ, Szegi I, Nemeth M, Papp J Gy, Szekeres L (1978) Does adenosine exert any effect on heart ventricle? Abstracts of the Seventh International Congress of Pharmacology, Paris, p 981

  104. Szentmiklósi AJ, Nemeth M, Szegi I, Papp J Gy, Szekeres L (1979) On the possible role of adenosine in hypoxia-induced alterations of the electrical and mechanical activity of the atrial myocardium. Arch Int Pharmacodyn 238:283–295

    Google Scholar 

  105. Szentmiklósi AJ, Nemeth M, Szegi I, Papp J Gy, Szekeres L (1980) Effect of adenosine on sinuatrial and ventricular automaticity of the guinea-pig. Naunyn-Schmiedeberg's Arch Pharmacol 311:147–149

    Google Scholar 

  106. Szentmiklósi AJ, Kovacs T, Cseppento A, Szegi J (1983) On the possible mechanism underlying the inhibitory action of adenosine (AD) in atrial myocardium of guinea pig. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Martinus Nijhoff Publishers, The Hague Boston London, p 543

    Google Scholar 

  107. Trost T, Stock K (1977) Effects of adenosine derivatives on cAMP accumulation and lipolysis in rat adipocytes and on adenylate cyclase on adipocyte plasma membranes. Naunyn-Schmiedeberg's Arch Pharmacol 299:33–40

    Google Scholar 

  108. Ukena D, Poeschla E, Schwabe U (1984) Guanine nucleotide and cation regulation of radioligand binding to Ri adenosine receptors in rat fat cells. Naunyn-Schmiedeberg's Arch Pharmacol 326:241–247

    Google Scholar 

  109. Urthaler F, James TN (1972) Effects of adenosine and ATP on AV conduction and on AV junctional rhythm. J Lab Clin Med 79:96–105

    Google Scholar 

  110. Van Calker D, Muller N, Hamprecht B (1979) Adenosine regulates by two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Google Scholar 

  111. Watanabe AM, Besch HR (1974) Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea-pig hearts. Circ Res 35:316–324

    Google Scholar 

  112. Watt AH (1984) Hypertrophic cardiomyopathy: a disease of impaired adenosine-mediated autoregulation of the heart. Lancet 1:1271–1273

    Google Scholar 

  113. Wesley RC jr, Lerman BB, DiMarco JP, Berne RM, Belardinelli L (1986) Mechanism of atropine-resistant atrioventricular block during inferior myocardial infarction: Possible role of adenosine. J Am Coll Cardiol 8:1232–1234

    Google Scholar 

  114. West GA, Belardinelli L (1985) Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pfluegers Arch 403:66–74

    Google Scholar 

  115. West GA, Belardinelli L (1985) Correlation of sinus slowing and hyperpolarization caused by adenosine in sinus node. Pfluegers Arch 403:75–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M. Kardiale Wirkungen von Adenosin. Klin Wochenschr 65, 487–499 (1987). https://doi.org/10.1007/BF01721034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01721034

Key words

Navigation