, Volume 17, Issue 4, pp 239–244 | Cite as

Approximations for multiserver queues with balking/retrial discipline

  • G. I. Falin
  • J. R. Artalejo
Theoretical Papers


Queueing models including the effects of repeated attempts have wide practical use in designing communication systems. The model studied in this paper not only takes into account retrials due to congestion but also considers the effects of balking discipline. Two approximations are considered in order to study the system behaviour for low retrial intensity.

Key words

M/M/c system retrial discipline 


Für die Planung von Kommunikationssystemen sind Warteschlangenmodelle von großer Bedeutung, welche die Möglichkeit eines wiederholten Zugangsversuchs abgewiesener Kunden zulassen. In dieser Arbeit untersuchen wir nicht nur den Fall, daß Kunden in Abhängigkeit von der Schlangenlänge auf direkten Zugang zum System verzichten, um später einen erneuten Zugangsversuch zu unternehmen. Dabei setzen wir voraus, daß die Wiederholintensität gering ist, um geeignete Approximationsverfahren einsetzen zu können.


BedienungssystemM/M/c wiederholte Zugangsversuche 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artalejo JR, A queueing system with returning customers and waiting line. Oper Res Lett (to appear)Google Scholar
  2. 2.
    Choi BD, Park KK (1990) TheM/G/1 queue with Bernoulli schedule. Queueing Syst 7:219–228CrossRefGoogle Scholar
  3. 3.
    Cohen JW (1957) Basic problems of telephone traffic theory and the influence of repeated calls. Philips Telecommun Rev 18:49–100Google Scholar
  4. 4.
    Dick RS (1970) Some theorems on single-server queue with balking. Oper Res 18:1193–1206CrossRefGoogle Scholar
  5. 5.
    Falin GI (1990) A survey of retrial queues. Queueing Syst 7:127–168CrossRefGoogle Scholar
  6. 6.
    Falin GI (1991) A diffusion approximation for retrial queueing systems. Theory Probab Appl 36:149–152CrossRefGoogle Scholar
  7. 7.
    Falin GI (1991) Space-heterogeneous random walks on semistrips associated with retrial queues. In: Choi BD, Yim JW (eds) Proceedings of Kaist Mathematics Workshop Vol 6:35–45Google Scholar
  8. 8.
    Falin GI, Artalejo JR, Martin M (1993) On the single server retrial queue with priority customers. Queueing Syst 14:439–455CrossRefGoogle Scholar
  9. 9.
    Greenberg BS, Wolff RW (1987) An upper bound on the performance of queues with returning customers. J Appl Probab 24:466–475CrossRefGoogle Scholar
  10. 10.
    Greenberg BS (1989)M/G/1 queueing systems with returning customers. J Appl Probab 26:152–163CrossRefGoogle Scholar
  11. 11.
    Khalil Z, Falin GI, Yang T (1992) Some analytical results for congestion in subscriber line modules. Queueing Syst 10:381–402CrossRefGoogle Scholar
  12. 12.
    Malyshev VA (1972) Homogeneous random walks on the product of a finite set and a half-line, in: Probabilistic Method of Research, Moscow State University (in Russian)Google Scholar
  13. 13.
    Neuts MF (1978) Markov chains with applications in queueing theory, which have a matrix-geometric invariant probability vector. Adv Appl Probab 10:185–212CrossRefGoogle Scholar
  14. 14.
    Schellhaas H (1983) Computation of the state probabilities inM/G/1 queues with state dependent input and state dependent service. OR Spektrum 5:223–228CrossRefGoogle Scholar
  15. 15.
    Stoyan D (1983) Comparison methods for queues and other stochastic models. Wiley, New YorkGoogle Scholar
  16. 16.
    Yang T, Templeton JGC (1987) A survey on retrial queues. Queueing Syst 2:203–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. I. Falin
    • 1
  • J. R. Artalejo
    • 2
  1. 1.Department of Probability, Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia
  2. 2.Department of Statistics and Operations Research, Mathematics FacultyUniversidad Complutense de MadridMadridSpain

Personalised recommendations