, Volume 8, Issue 1, pp 33–36 | Cite as

The traveling inspector model

  • J. A. Filar
  • T. A. Schultz
Theoretical Papers


In this note we introduce a model of a dynamic inspection process which we call “The Traveling Inspector Model.” The problem is formulated as a single-controller, zero-sum, undiscounted stochastic game, with some special structure. This structure ensures that the game is solvable by a relatively simple linear program.


Payoff Stationary Strategy Stochastic Game Toxic Waste Inspection Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In dieser Arbeit betrachten wir ein Modell eines dynamischen Inspektionsprozesses, das wir “Traveling-Inspector-Modell” nennen. Das Problem wird formuliert als ein speziell strukturiertes stochastisches Zweipersonen-Nullsummenspiel, bei dem ein Spieler das Übergangsgesetz bestimmt. Wegen der speziellen Struktur kann das Problem mithilfe eines relativ einfachen linearen Programms gelöst werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Filar JA (1985) Player aggregation in the traveling inspector model. IEEE AC-30, 8:723–729CrossRefGoogle Scholar
  2. 2.
    Filar JA, Schultz TA (1983) Interactive solutions for the traveling inspector model and related problems. Operations Research Group Report 83-06, The Johns Hopkins University, Baltimore, MD, USAGoogle Scholar
  3. 3.
    Hordijk A, Kallenberg LCM (1981) Linear programming and Markov games I and II. In: Moeschlin O, Pallaschke D (eds) Game theory and mathematical economics. North-Holland, Amsterdam, pp 291–320Google Scholar
  4. 4.
    Sobel MJ (1981) Myopic solutions of Markov decision processes and stochastic games. Oper Res 29:995 -1009CrossRefGoogle Scholar
  5. 5.
    Vrieze OJ (1981) Linear programming and undiscounted stochastic games in which one player controls transitions. OR Spektrum 3:29–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. A. Filar
    • 1
  • T. A. Schultz
    • 1
  1. 1.Department of Mathematical SciencesThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations