Skip to main content
Log in

Das Problem des zellulären Herzglykosidrezeptors

The problem of the cellular receptor for cardiac glycosides

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

This review concerns the Na+, K+-ATPase as well as the Na+, K+-pump in the intact membrane and the highly specific inhibition of this transport system by cardiac glycosides.

The interaction between glycoside and enzyme and the regulation of the kinetics of glycoside binding by ATP, K+, Na+, Mg2+ and Ca2+ are described.

Emphasis is placed on the significance of the Na+, K+-pump as the pharmacological receptor for cardiac glycosides. The problems encountered and progress made in attempting to correlate the inotropic action of cardiac glycosides with the binding of these drugs to the heart muscle and with the inhibition of the Na+, K+-pump are reported.

Recent results concerning increases of the intracellular Na+ concentration which are obtained by a partial inhibition of the Na+, K+-pump and which are followed by an elevation of the intracellular Ca2+-activity are reviewed.

The discovery of a digitalis-like endogenous activity corresponds to the high specificity of the receptor for cardiac glycosides.

Zusammenfassung

Diese Übersicht beschreibt die Eigenschaften der Na+, K+-ATPase bzw. der Na+, K+-Pumpe in der intakten Membran und die hochspezifische Hemmung dieses Transportenzyms durch Herzglykoside.

Es wird auf die Wechselwirkung zwischen Glykosid und Enzym eingegangen und da bei insbesondere auf die Steuerung der Glykosidbindung durch ATP, K+, Na+, Mg2+ und Ca2+.

Die Bedeutung des Enzyms als wahrscheinlicher pharmakologischer Rezeptor für Herzglykoside wird herausgestellt. Zunächst erfolgt eine Beschreibung der Schwierigkeiten und Fortschritte bei der Herstellung eines Zusammenhanges zwischen positiv inotropem Effekt von Herzglykosiden und deren Bindung an die Na+, K+-Pumpen des Herzmuskels bzw. der Hemmung des Transportsystems durch Herzglykoside.

Es werden neuere Erkenntnisse über die Verknüpfung von der Hemmung der Na+, K+-Pumpe, die zu einer Erhöhung der intrazellulären Na+-Konzentration führt, und der indirekten Erhöhung der intrazellulären Ca2+-Aktivität referiert.

Mitteilungen über den Nachweis einer herzglykosidartigen endogenen Aktivität entsprechen der hohen Rezeptorspezifität für Herzglykoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Akera T (1977) Membrane adenosinetriphosphatase: a digitalis receptor? Science 198:569–574

    Google Scholar 

  2. Akera T, Brody TM (1978) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29:187–220

    Google Scholar 

  3. Akera T, Larsen FS, Brody TM (1969) The effect of ouabain on sodium- and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J Pharmacol Exp Ther 170:17–26

    Google Scholar 

  4. Akera T, Larsen FS, Brody TM (1970) Correlation of cardiac sodium- and potassium-activated adenosine triphosphatase activity with ouabain-induced inotropic stimulation. J Pharmacol Exp Ther 173:145–151

    Google Scholar 

  5. Akera T, Olgaarad MK, Temma K, Brody TM (1977) Development of the positive inotropic action of ouabain: effects of transmembrane sodium movement. J Pharmacol Exp Ther 203:675–684

    Google Scholar 

  6. Albers RW, Koval GJ, Siegel GI (1968) Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosinetriphosphatase. Mol Pharmacol 4:324–336

    Google Scholar 

  7. Allen JC, Entman ML, Schwartz A (1975) The nature of the transport adenosine triphosphatase-digitalis complex. VIII. The relationship between in vivo formed (3H-ouabain-Na+-K+-adenosinetriphosphatase) complex and ouabain-induced positive inotropism. J Pharmacol Exp Ther 192:105–112

    Google Scholar 

  8. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200:431–458

    Google Scholar 

  9. Bentfeld M, Lüllmann H, Peters T, Proppe D (1977) Interdependence of ion transport and the action of ouabain in heart muscle. Br J Pharmacol 61:19–27

    Google Scholar 

  10. Besch HR, Allen JC, Glick G, Schwartz A (1970) Correlation between the inotropic action of ouabain and its effects on subcellular enzyme systems from canine myocardium. J Pharmacol Exp Ther 171:1–12

    Google Scholar 

  11. Biedert S, Barry WH, Smith TW (1979) Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol 74:479–494

    Google Scholar 

  12. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 232:C165–C173

    Google Scholar 

  13. Bodemann HH, Callahan TJ, Reichmann H, Hoffman JF (1978) Interaction of internal Na and K with respect to the kinetics of ouabain binding to the red cell membrane. XIVth Intern. Congress of Internal Medicine, pp 57–58 (Abstract)

  14. Bodemann HH, Hoffman JF (1976a) Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J Gen Physiol 67:497–525

    Google Scholar 

  15. Bodemann HH, Hoffman JF (1976b) Comparison of the side-dependent effects of Na and K on orthophosphate-, UTP-, and ATP-promoted ouabain binding to reconstituted human red blood cell ghosts. J Gen Physiol 67:527–545

    Google Scholar 

  16. Bodemann HH, Hoffman JF (1976c) Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red blood cell ghosts and the control of Na transport by internal Mg. J Gen Physiol 67:547–561

    Google Scholar 

  17. Bodemann HH, Irmer M, Heni N, Bührer KH, Reichmann H (1977) Untersuchungen am Erythrozyten über die Bindung und biologische Wirksamkeit von Herzglykosiden. Herz Kreisl 9:913–920

    Google Scholar 

  18. Bodemann HH, Passow H (1972) Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol 8:1–26

    Google Scholar 

  19. Burck HC, Haasis R, Larbig D (1975) Beeinflussung der Erythrozyten-Elektrolyte durch β-Methyl-Digoxin bei Gesunden. Klin Wochenschr 53:125–128

    Google Scholar 

  20. Caldwell PC, Keynes RD (1957) The utilization of phosphate bond energy for sodium extrusion from giant axons. J Physiol 137:12–13

    Google Scholar 

  21. Caldwell PC, Keynes RD (1959) The effect of ouabain on the efflux of sodium from a squid giant axon. J Physiol 148:8–9 p

    Google Scholar 

  22. Cattell M, Gold H (1938) The influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther 62:116–125

    Google Scholar 

  23. Choi YR, Akera T (1977) Kinetic studies on the interaction between ouabain and Na+, K+-ATPase. Biochim Biophys Acta 481:648–659

    Google Scholar 

  24. Dal Pra P, Rossini L, Segre G (1970) The kinetics of ouabain uptake in frog heart in relation to the kinetics of ionotropic effect and to the activation of transport ATPases. Pharmacol Res Comm 2:177–191

    Google Scholar 

  25. Dransfeld H, Greeff K, Berger H, Cautius V (1966) Die verschiedene Empfindlichkeit der Na++K+-aktivierten ATPase des Herz- und Skelettmuskels gegen k-Strophanthin. Naunyn-Schmiedebergs Arch Pharmakol Exp Pathol 254:225–234

    Google Scholar 

  26. Dutta S, Marks BH (1969) Factors that regulate ouabain-H3 accumulation by the isolated guinea-pig heart. J Pharmacol Exp Ther 170:318–325

    Google Scholar 

  27. Ebner F, Reiter M (1977) The dependence on contraction frequency of the positive inotropic effect of dihydro-ouabain. Naunyn Schmiedebergs Arch Pharmacol 300:1–9

    Google Scholar 

  28. Erdmann E, Schoner W (1973) Ouabain-receptor interaction in (Na++K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta 307:386–398

    Google Scholar 

  29. Fishman MC (1979) Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci 76:4661–4663

    Google Scholar 

  30. Forbush B, Hoffman JF (1979) Evidence that ouabain binds to the same large polypeptide chain of dimeric Na, K-ATPase that is phosphorylated by Pi. Biochemistry 18:2308–2315

    Google Scholar 

  31. Fricke U, Klaus W (1969) Die Reversibilität der Wirkung von Digitoxin, Strophanthidin und Strophanthin-3-bromazetat am Papillarmuskel und einer mikrosomalen Na+-K+-aktivierbaren ATPase des Meerschweinchens. Experientia 25:685–686

    Google Scholar 

  32. Gardner JD, Conlon TP (1972) The effect of sodium and potassium on ouabain bindung by human erythrocytes. J Gen Physiol 60:609–629

    Google Scholar 

  33. Garrahan PJ, Glynn IM (1967) The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J Physiol 192:237–256

    Google Scholar 

  34. Giotta G (1976) Quaternary structure of (Na+ +K+)-dependent adenosine triphosphatase. J Biol Chem 251:1247–1252

    Google Scholar 

  35. Glynn IM (1964) The action of cardiac glycosides on ion movements. Pharmacol Rev 16:381–407

    Google Scholar 

  36. Glynn IM (1968) Membrane adenosine triphosphatase and cation transport. In: Northcote DH (ed) Structure and function of membranes. (Britisch Medical Bulletin vol 24, pp 165–169)

  37. Glynn IM, Lew VL, Lüthi UC (1970) Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol 207:371–391

    Google Scholar 

  38. Glynn IM, Karlish SJD (1975) The sodium pump. Ann Rev Physiol 37:13–55

    Google Scholar 

  39. Goldman RH, Coltart DJ, Schweizer E, Snidow G, Harrison DC (1975) Dose response in vivo to digoxin in normo- and hyperkalaemia-associated biochemical changes. Cardiovasc Res 9:515–523

    Google Scholar 

  40. Hansen O (1971) The relationship between g-strophanthin binding capacity and ATPase activity in plasma membrane fragments from ox brain. Biochim Biophys Acta 233:117–121

    Google Scholar 

  41. Hansen O, Skou JC (1973) A study on the influence of the concentration of Mg2+, Pi, K+, Na+, and Tris on (Mg+ + Pi)-supported g-Strophanthin binding to (Na+ + K+)-activated ATPase from ox brain. Biochim Biophys Acta 311:51–66

    Google Scholar 

  42. Harris JE (1940) The reversible nature of the potassium loss from erythrocytes during storage of blood at 2–5° C. Biol Bull 79:373

    Google Scholar 

  43. Haupert GT, Sancho JM (1979) Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci 76:4658–4660

    Google Scholar 

  44. Haustein KO, Hauptmann J (1974) Studies on cardioactive steroids. II. Structure-activity relationships in the isolated guinea pig heart. Pharmacology 11:129–138

    Google Scholar 

  45. Hegyvary C (1976) Ouabain-binding and phosphorylation of (Na+ + K+) ATPase treated with N-ethylmaleimide or oligomycin. Biochim Biophys Acta 422:365–379

    Google Scholar 

  46. Hegyvary C, Post RL (1971) Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J Biol Chem 246:5234–5240

    Google Scholar 

  47. Hobbs AS, Dunham PB (1976) Evidence for two sodium sites on the external aspects of Na-K pump in human erythrocytes. Nature 260:651–652

    Google Scholar 

  48. Hoffman JF (1962) The active transport of sodium by ghosts of human red blood cells. J Gen Physiol 45:837–859

    Google Scholar 

  49. Hoffman JF (1966) The red cell membrane and the transport of sodium and potassium. Am J Med 41:666–680

    Google Scholar 

  50. Hoffmann JF (1969) The interaction between tritiated ouabain and the Na-K pump in red blood cells. J Gen Physiol 54:343s-350s

    Google Scholar 

  51. Hokin LE, Dahl JL, Deupree JD, Dixon JF, Hackney JF, Perdue JF (1973) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of squalus acanthias. J Biol Chem 248:2593–2605

    Google Scholar 

  52. Huang W, Rhee HM, Chiu TH, Askari A (1979) Re-evaluation of the relationship between the positive inotropic effect of ouabain and its inhibitory effect on (Na+ + K+)-dependent adenosine triphosphatase in rabbit and dog hearts. J Pharmacol Exp Ther 211:571–582

    Google Scholar 

  53. Inagaki C, Lindenmayer GE, Schwartz A (1974) Effects of sodium and potassium on binding of ouabain to the transport adenosine triphosphatase. J Biol Chem 249:5135–5140

    Google Scholar 

  54. Joiner CH, Lauf PK (1978) Modulation of oubain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes. J Physiol 283:177–196

    Google Scholar 

  55. Jorgensen PL (1974) Purification and characterization of (Na+ + K+)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim Biophys Acta 356:53–67

    Google Scholar 

  56. Jorgensen PL (1977) Purification and characterization of (Na+ + K+)-ATPase. VI. Differential tryptic modifications of catalytic functions of the purified enzyme in presence of NaCl and KCl. Biochim Biophys Acta 466:97–108

    Google Scholar 

  57. Kettlewell M, Nowers A, White R (1972) Effect of digoxin on human red blood cell electrolytes. Br J Pharmacol 44:165–167

    Google Scholar 

  58. Kyte J (1972) Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem 247:7642–7649

    Google Scholar 

  59. Langer GA (1972) Effects of digitalis on myocardial ionic exchange. Circulation 46:180–187

    Google Scholar 

  60. Langer GA, Brandy AJ, Tan ST, Serena SD (1975) Correlation of the glycoside response, the force staircase and the action potential configuration in the neonatal rat. Circ Res 34:744–752

    Google Scholar 

  61. Lee CO, Uhm DY, Dresdner K (1980) Sodium-calcium exchange in rabbit heart muscle cells: direct measurements of sarcoplasmic Ca2+ activity. Science 209:699–701

    Google Scholar 

  62. Lee KS, Klaus W (1971) The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev 23:193–261

    Google Scholar 

  63. Lew VL, Hardy MA, Ellory JC (1973) The uncoupled extrusion of Na+ through the Na+ pump. Biochim Biophys Acta 323:251–266

    Google Scholar 

  64. Linden J, Brooker G (1980) Sodium requirement for effects of ouabain on contraction of isolated guinea pig atria. Circ Res 46:553–564

    Google Scholar 

  65. Lindenmayer GE, Laughter AH, Schwartz A (1968) Incorporation of inorganic phosphate-32 into a Na+, K+-ATPase preparation: stimulation by ouabain. Arch Biochem Biophys 127:187–192

    Google Scholar 

  66. Ling GN (1973) How does ouabain control the levels of cell K+ and Na+? By interference with a Na pump or by allosteric control of K+-Na+ adsorption on cytoplasmic protein sites? Physiol Chem Physics 5:295–311

    Google Scholar 

  67. Loes MW, Singh S, Lock JE, Mirkin BL (1978) Relation between plasma and red-cell electrolyte concentrations and digoxin levels in children. N Engl J Med 299:501–504

    Google Scholar 

  68. Marban E, Tsien RW (1979) Ouabain increases the slow inward calcium current in ventricular muscle of the ferret. J Physiol 292:72–73 p

    Google Scholar 

  69. Marcus FI, Nimmo L, Kapadia GG, Goldsmith C (1971) The effect of acute hypokalaemia on the myocardial contraction and body distribution of tritiated digoxin in the dog. J Pharmacol Exp Ther 178:271–281

    Google Scholar 

  70. Matsui H, Schwartz A (1968) Mechanism of cardiac glycoside inhibition of the (Na+ + K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta 151:655–663

    Google Scholar 

  71. McDonald TF, Nawrath H, Trautwein W (1975) Membrane currents and tension in cat ventricular muscle treated with cardiac glycosides. Circ Res 37:674–682

    Google Scholar 

  72. Murthy RV, Kidwai AM, Daniel EE (1974) Dissociation of contractile effect and binding and inhibition of Na+, K+-ATPase by cardiac glycosides in rabbit myometrium. J Pharmacol Exp Ther 188:575–581

    Google Scholar 

  73. Noack E, Felgenträger J, Zettner B (1979) Changes in myocardial Na and K content during the development of cardiac glycoside inotropy. J Mol Cell Cardiol 11:1189–1194

    Google Scholar 

  74. Norby JG, Jensen J (1971) Binding of ATP to brain microsomal ATPase. Determination of the ATP binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta 233:104–116

    Google Scholar 

  75. Okita GT, Richardson F, Roth-Schechter BF (1973) Dissociation of the positive inotropic action of digitalis from inhibition of sodium- and potassium-activated adenosine triphosphatase. J Pharmacol Exp Ther 185:1–11

    Google Scholar 

  76. Peters T, Raben RH, Wassermann O (1974) Evidence for a dissociation between positive inotropic effect and inhibition of the Na+-K+-ATPase by ouabain, cassaine and their alkylating derivatives. Eur J Pharmacol 26:166–174

    Google Scholar 

  77. Portius HJ, Repke K (1964) Versuch einer Analyse der Beziehungen zwischen chemischer Struktur und Digitalis-ähnlicher Wirksamkeit auf der Rezeptorebene. Arzneimittelforschung 14:1073–1077

    Google Scholar 

  78. Post RL, Jolly PC (1957) The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta 25:118–128

    Google Scholar 

  79. Post RL, Kume S, Tobin T, Orcutt B, Sen AK (1969) Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol 54:306s-326s

    Google Scholar 

  80. Prindle KH, Skelton CL, Epstein SE, Marcus FI (1971) Influence of extracellular potassium concentration on myocardial uptake and inotropic effect of tritiated digoxin. Circ Res 28:337–345

    Google Scholar 

  81. Repke KRH (1961) Metabolism of cardiac glycosides. In: Wildbrandt W (ed) New aspects of cardiac glycosides. Pergamon Press, London 1963 (Proceedings of the 1st International Pharmacology Meeting, Stockholm 1961, Bd III, (p 47)

  82. Reuter H (1979) Properties of two inward membrane currents in the heart. Ann Rev Physiol 41:413–424

    Google Scholar 

  83. Rhee HM, Hokin LE (1979) Inhibition of ouabain-binding to (Na+ + K+) ATPase by antibody against the catalytic subunit but not by antibody against the glycoprotein subunit. Biochim Biophys Acta 558:108–112

    Google Scholar 

  84. Roth-Schechter BF, Okita GT, Anderson D, Richardson F (1970) Relationship among contraction, drug binding and positive inotropic action of digoxin. J Pharmacol Exp Ther 171:249–255

    Google Scholar 

  85. Ruoho A, Kyte J (1974) Photoaffinity labeling of the ouabainbinding site on (Na+ + K+) adenosine triphosphatase. Proc Natl Acad Sci 71:2352–2356

    Google Scholar 

  86. Sachs JR (1974) Interaction of external K, Na and cardioactive steroids with the Na-K-pump of the human red blood cell. J Gen Physiol 63:123–143

    Google Scholar 

  87. Sachs JR (1980) The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism. J Physiol 302:219–240

    Google Scholar 

  88. Schön R, Schönfeld W, Repke KRH (1970) Zum Mechanismus der Hemmung der (NaK)-ATPase durch Calciumionen. Acta Biol Med Germ 25:K1–5

    Google Scholar 

  89. Schatzmann HJ (1953) Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrozytenmembran. Helv Physiol Pharmacol Acta 11:346–354

    Google Scholar 

  90. Schatzmann HJ (1965) The role of Na+ and K+ in the ouabain-inhibition of the Na+ + K+-activated membrane adenosine triphosphatase. Biochim Biophys Acta 94:89–96

    Google Scholar 

  91. Schoner W, Kirch U, Halbwachs C (1979) A study on the interaction of Na+ and of K+ with the ouabain receptor complex I and II of beef brain. In: Skou JC, Norby JG (eds) Na, K-ATPase. Structure and kinetics. Academic Press, London New York San Francisco, pp 423–430

    Google Scholar 

  92. Schwartz A (1976) Is the cell membrane Na+, K+-ATPase enzyme system the pharmacological receptor for digitalis? Circ Res 39:2–7

    Google Scholar 

  93. Schwartz A, Allen JC (Cochairmen) (1977) Newer aspects of cardiac glycoside action. Symposium at the 60th Annual Meeting Fed Am Soc Exp Biol 1976. Fed Proc 36:2207–2241

    Google Scholar 

  94. Schwartz A, Allen JC, Harigaya S (1969) Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J Pharmacol Exp Ther 168:31–41

    Google Scholar 

  95. Schwartz A, Lindenmayer GE, Allen JC (1975) The sodiumpotassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev 27:3–134

    Google Scholar 

  96. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Google Scholar 

  97. Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617

    Google Scholar 

  98. Straub FB (1953) Acta Physiol. Acad Sci Hung. 4:235, zitiert von Gardos G (1954) Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol Acad Sci Hung 6:191–199

    Google Scholar 

  99. Sweadner KJ, Goldin SM (1980) Active transport of sodium and potassium ions. N Engl J Med 302:777–783

    Google Scholar 

  100. Thomas R, Boutagy J, Gelbart AC (1974) Cardenolide analogs. V. Cardiotonic activity of semisynthetic analogs of digitoxigenin. J Pharmacol Exp Ther 191:219–231

    Google Scholar 

  101. Tobin T, Akera T, Baskin SI, Brody TM (1973) Calcium ion and sodium- and potassium-dependent adenosine triphosphatase: Its mechanism of inhibition and identification of the E1-P intermediate. Mol Pharmacol 9:336–349

    Google Scholar 

  102. Tobin T, Brody TM (1972) Rates of dissociation of enzymouabain complexes and K0.5 values in (Na+ + K+) adenosine triphosphatase from different species. Biochem Pharmacol 21:1553–1560

    Google Scholar 

  103. Tobin T, Henderson R, Sen AK (1972) Species and tissue differences in the rate of dissociation of ouabain from (Na+ + K+)-ATPase. Biochim Biophys Acta 247:551–555

    Google Scholar 

  104. Wallick ET, Lane LK, Schwartz A (1979) Biochemical mechanism of the sodium pump. Ann Rev Physiol 41:397–411

    Google Scholar 

  105. Weingart R, Kass RS, Tsien RW (1978) Is digitalis inotropy associated with enhanced slow inward calcium current? Nature 273:389–392

    Google Scholar 

  106. Wessels F, Samizadeh A, Heinze A, Tasche V (1975) Erythrozytenelektrolyte als Parameter einer wirksamen Digitalisierung. 81. Tagung der Deutschen Gesellschaft für Innere Medizin. Bergmann, München, p 83

  107. Whittam R, Chipperfield AR (1975) The reaction mechanism of the sodium pump. Biochim Biophys Acta 415:149–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodemann, H.H. Das Problem des zellulären Herzglykosidrezeptors. Klin Wochenschr 59, 1333–1343 (1981). https://doi.org/10.1007/BF01720553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720553

Key words

Schlüsselwörter

Navigation